Difference between revisions of "2002 AMC 12B Problems/Problem 22"

(Solution)
(Solution 2)
Line 21: Line 21:
  
 
~yofro
 
~yofro
 +
 +
=== Solution 3 ===
 +
By the change of base formula, <math>\log_n 2002</math> and <math>\log_{2002} n</math> are reciprocals, so
 +
<cmath>a_n = \frac{1}{\log_n 2002} = \log_{2002} n</cmath>
 +
for all <math>n</math>.
 +
 +
Then,\begin{align*}
 +
b - c &= (a_2 + a_3 + a_4 + a_5) - (a_{10} + a_{11} + a_{12} + a_{13} + a_{14}) \\
 +
&= (\log_{2002} 2 + \log_{2002} 3 + \log_{2002} 4 + \log_{2002} 5) \\
 +
&\quad - (\log_{2002} 10 + \log_{2002} 11 + \log_{2002} 12 + \log_{2002} 13 + \log_{2002} 14) \\
 +
&= \log_{2002} \frac{2 \cdot 3 \cdot 4 \cdot 5}{10 \cdot 11 \cdot 12 \cdot 13 \cdot 14} \\
 +
&= \log_{2002} \frac{1}{2002} \\
 +
&= \boxed{-1}.
 +
\end{align*}
 +
The answer is (B).
  
 
== See also ==
 
== See also ==

Revision as of 21:30, 23 November 2020

Problem

For all integers $n$ greater than $1$, define $a_n = \frac{1}{\log_n 2002}$. Let $b = a_2 + a_3 + a_4 + a_5$ and $c = a_{10} + a_{11} + a_{12} + a_{13} + a_{14}$. Then $b- c$ equals

$\mathrm{(A)}\ -2 \qquad\mathrm{(B)}\ -1  \qquad\mathrm{(C)}\ \frac{1}{2002} \qquad\mathrm{(D)}\ \frac{1}{1001} \qquad\mathrm{(E)}\ \frac 12$

Solution

By the change of base formula, $a_n = \frac{1}{\frac{\log 2002}{\log n}} = \left(\frac{1}{\log 2002}\right) \log n$. Thus \begin{align*}b- c &= \left(\frac{1}{\log 2002}\right)(\log 2 + \log 3 + \log 4 + \log 5 - \log 10 - \log 11 - \log 12 - \log 13 - \log 14)\\ &= \left(\frac{1}{\log 2002}\right)\left(\log \frac{2 \cdot 3 \cdot 4 \cdot 5}{10 \cdot 11 \cdot 12 \cdot 13 \cdot 14}\right)\\  &= \left(\frac{1}{\log 2002}\right) \log 2002^{-1} = -\left(\frac{\log 2002}{\log 2002}\right) = -1 \Rightarrow \mathrm{(B)}\end{align*}

Solution 2

Note that $\frac{1}{\log_a b}=\log_b a$. Thus $a_n=\log_{2002} n$. Also notice that if we have a log sum, we multiply, and if we have a log product, we divide. Using these properties, we get that the result is the following:

\[\log_{2002}\left(\frac{2*3*4*5}{10*11*12*13*14}=\frac{1}{11*13*14}=\frac{1}{2002}\right)=\boxed{\textbf{(B)}-1}\]

~yofro

Solution 3

By the change of base formula, $\log_n 2002$ and $\log_{2002} n$ are reciprocals, so \[a_n = \frac{1}{\log_n 2002} = \log_{2002} n\] for all $n$.

Then,\begin{align*} b - c &= (a_2 + a_3 + a_4 + a_5) - (a_{10} + a_{11} + a_{12} + a_{13} + a_{14}) \\ &= (\log_{2002} 2 + \log_{2002} 3 + \log_{2002} 4 + \log_{2002} 5) \\ &\quad - (\log_{2002} 10 + \log_{2002} 11 + \log_{2002} 12 + \log_{2002} 13 + \log_{2002} 14) \\ &= \log_{2002} \frac{2 \cdot 3 \cdot 4 \cdot 5}{10 \cdot 11 \cdot 12 \cdot 13 \cdot 14} \\ &= \log_{2002} \frac{1}{2002} \\ &= \boxed{-1}. \end{align*} The answer is (B).

See also

2002 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png