Difference between revisions of "1990 AIME Problems/Problem 5"

m (Solution: typo)
(Solution: wait, that's not true... fix)
Line 3: Line 3:
  
 
== Solution ==
 
== Solution ==
The [[prime factorization]] of <math>75 = 3^15^2</math>. Thus, for <math>n</math> to have exactly <math>75</math> integral divisors, we need to have <math>\displaystyle n = a^{(5 - 1)}b^{(5 - 1)}c^{(3 - 1)}</math>. Since we know that <math>n</math> is [[divisible]] by <math>75</math>, two of the [[factor]]s must be <math>3</math> and <math>5</math>. To minimize <math>n</math>, the remaining factor must be <math>2</math>; also to minimize it, we want <math>5</math> to be raised to the least power. Therefore, <math>n = 2^43^45^2</math> and <math>\frac{n}{75} = \frac{2^43^45^2}{3 \cdot 5^2} = 16 \cdot 27 = 432</math>.
+
The [[prime factorization]] of <math>75 = 3^15^2</math>. Thus, for <math>n</math> to have exactly <math>75</math> integral divisors, we need to have <math>\displaystyle n = a^{x-1}b^{y-1}\ldots</math> such that <math>x \cdot y \cdot \ldots = 75</math>. Since we know that <math>n</math> is [[divisible]] by <math>75</math>, two of the [[prime]] [[factor]]s must be <math>3</math> and <math>5</math>. To minimize <math>n</math>, a third factor which is less than <math>5</math> can be used; the only possible [[prime]] number is <math>2</math>. Also to minimize <math>n</math>, we want <math>5</math>, the greatest of all the factors, to be raised to the least power. Therefore, <math>n = 2^43^45^2</math> and <math>\frac{n}{75} = \frac{2^43^45^2}{3 \cdot 5^2} = 16 \cdot 27 = 432</math>.
  
 
== See also ==
 
== See also ==
 
{{AIME box|year=1990|num-b=4|num-a=6}}
 
{{AIME box|year=1990|num-b=4|num-a=6}}

Revision as of 09:40, 3 March 2007

Problem

Let $n^{}_{}$ be the smallest positive integer that is a multiple of $75_{}^{}$ and has exactly $75_{}^{}$ positive integral divisors, including $1_{}^{}$ and itself. Find $n/75^{}_{}$.

Solution

The prime factorization of $75 = 3^15^2$. Thus, for $n$ to have exactly $75$ integral divisors, we need to have $\displaystyle n = a^{x-1}b^{y-1}\ldots$ such that $x \cdot y \cdot \ldots = 75$. Since we know that $n$ is divisible by $75$, two of the prime factors must be $3$ and $5$. To minimize $n$, a third factor which is less than $5$ can be used; the only possible prime number is $2$. Also to minimize $n$, we want $5$, the greatest of all the factors, to be raised to the least power. Therefore, $n = 2^43^45^2$ and $\frac{n}{75} = \frac{2^43^45^2}{3 \cdot 5^2} = 16 \cdot 27 = 432$.

See also

1990 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions