Difference between revisions of "2006 AMC 10A Problems/Problem 20"

m (edit slightly, add box)
m (See also: wrong #s)
Line 11: Line 11:
  
 
== See also ==
 
== See also ==
{{AMC10 box|year=2006|ab=A|num-b=17|num-a=19}}
+
{{AMC10 box|year=2006|ab=A|num-b=19|num-a=21}}
  
 
[[Category:Introductory Number Theory Problems]]
 
[[Category:Introductory Number Theory Problems]]

Revision as of 16:19, 26 February 2007

Problem

Six distinct positive integers are randomly chosen between 1 and 2006, inclusive. What is the probability that some pair of these integers has a difference that is a multiple of 5?

$\mathrm{(A) \ } \frac{1}{2}\qquad\mathrm{(B) \ } \frac{3}{5}\qquad\mathrm{(C) \ } \frac{2}{3}\qquad\mathrm{(D) \ } \frac{4}{5}\qquad\mathrm{(E) \ } 1\qquad$

Solution

For two numbers to have a difference that is a multiple of 5, the numbers must be congruent $\bmod{5}$ (their remainders after division by 5 must be the same).

$0, 1, 2, 3, 4$ are the possible values of numbers in $\bmod{5}$. Since there are only 5 possible values in $\bmod{5}$ and we are picking $6$ numbers, by the Pigeonhole Principle, two of the numbers must be congruent $\bmod{5}$.

Therefore the probability that some pair of the 6 integers has a difference that is a multiple of 5 is $1 \Longrightarrow \mathrm{E}$.

See also

2006 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions