Difference between revisions of "2020 IMO Problems/Problem 2"
Line 1: | Line 1: | ||
− | Problem 2. The real numbers a, b, c, d are such that | + | Problem 2. The real numbers <math>a, b, c, d</math> are such that <math>a\ge b \ge c\ge d > 0</math> and <math>a+b+c+d=1</math>. |
Prove that | Prove that | ||
<math>(a+2b+3c+4d)a^a b^bc^cd^d<1</math> | <math>(a+2b+3c+4d)a^a b^bc^cd^d<1</math> | ||
+ | |||
+ | |||
+ | == Solution == | ||
+ | |||
+ | Using Weighted AM -GM we get, | ||
+ | |||
+ | <cmath>\frac{a. a +b. b +c. c +d. d}{a+b+c+d} \ge (a^a b^b c^c d^d)^{\frac{1}{a+b+c+d}}</cmath> | ||
+ | |||
+ | <cmath>\implies a^a b^b c^c d^d \le a^2 +b^2 +c^2 +d^2</cmath> | ||
+ | |||
+ | So, <cmath>(a+2b+3c+4d) a^ab^bc^c \le (a+2b+3c+4d)(a^2+b^2+c^2+d^2) </cmath> | ||
+ | |||
+ | Now notice that , | ||
+ | |||
+ | \[ | ||
+ | a+2b+3c+4d \le | ||
+ | \begin{cases} | ||
+ | a+3b+3c+3d,& \text{as } d\le b\\ | ||
+ | 3a+3b+3c+d, &\text{as} d\le a \\ | ||
+ | 3a+b+3c+3d ,& \text{as} | ||
+ | b+d\le 2a \\ | ||
+ | 3a +3b +c +3d ,& \text{as} | ||
+ | 2c+d \le 2a+b | ||
+ | |||
+ | |||
+ | \end{cases} | ||
+ | \] | ||
+ | |||
+ | So, We get , | ||
+ | <cmath>(a+2b+3c+4d)(a^2+b^2+c^2+d^2) </cmath> | ||
+ | <cmath>= a^2(a+2b+3c+4d)+b^2(a+2b+3c+4d)+c^2 (a+2b+3c+4d) +d^2 (a+2b+3c+4d) </cmath> | ||
+ | |||
+ | <cmath>\le a^2(a+3b+3c+3d)+b^2(3a+b+3c+3d)+c^2 (3a+3b+c+3d) +d^2 (3a+3b+3c+d)</cmath> | ||
+ | |||
+ | <cmath>=(a+b+c+d)^3 =1</cmath> | ||
+ | |||
+ | Now , For equality we must have <math>a=b=c=d=\frac{1}{4}</math> | ||
+ | |||
+ | On that case we get ,<cmath>(a+2b+3c+4d) a^ab^bc^c \le (a+2b+3c+4d)(a^2+b^2+c^2+d^2) =\frac{5}{8} <1</cmath> |
Revision as of 23:20, 26 September 2020
Problem 2. The real numbers are such that and . Prove that
Solution
Using Weighted AM -GM we get,
So,
Now notice that ,
\[
a+2b+3c+4d \le
\begin{cases}
a+3b+3c+3d,& \text{as } d\le b\\ 3a+3b+3c+d, &\text{as} d\le a \\ 3a+b+3c+3d ,& \text{as} b+d\le 2a \\ 3a +3b +c +3d ,& \text{as} 2c+d \le 2a+b
\end{cases}
\]
So, We get ,
Now , For equality we must have
On that case we get ,