Difference between revisions of "2020 CIME I Problems"
Line 14: | Line 14: | ||
==Problem 4== | ==Problem 4== | ||
− | There exists a unique positive real number <math>x</math> satisfying <cmath>x=\sqrt{x^2+\frac{1}{x^2}} - \sqrt{x^2-\frac{1}{x^2}}</cmath>. Given that <math>x</math> can be written in the form <math>x=2^\frac{m}{n} \cdot 3^\frac{-p}{q}</math> for integers <math>m, n, p, q</math> with \gcd | + | There exists a unique positive real number <math>x</math> satisfying <cmath>x=\sqrt{x^2+\frac{1}{x^2}} - \sqrt{x^2-\frac{1}{x^2}}</cmath>. Given that <math>x</math> can be written in the form <math>x=2^\frac{m}{n} \cdot 3^\frac{-p}{q}</math> for integers <math>m, n, p, q</math> with \gcd(m, n) = \gcd(p, q) = 1, find <math>m+n+p+q</math>. |
Revision as of 13:31, 30 August 2020
2020 CIME I (Answer Key) | AoPS Contest Collections | ||
Instructions
| ||
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 |
Contents
Problem 1
A knight begins on the point in the coordinate plane. From any point the knight moves to either or . Find the number of ways the knight can reach .
Problem 2
At the local Blast Store, there are sufficiently many items with a price of for each nonnegative integer . A sales tax of is applied on all items. If the total cost of a purchase, after tax, is an integer number of cents, find the minimum possible number of items in the purchase.
Problem 3
In a math competition, all teams must consist of between and members, inclusive. Mr. Beluhov has students and he realizes that he cannot form teams so that each of his students is on exactly one team. Find the sum of all possible values of .
Problem 4
There exists a unique positive real number satisfying . Given that can be written in the form for integers with \gcd(m, n) = \gcd(p, q) = 1, find .