Difference between revisions of "2020 AMC 12A Problems/Problem 25"
Armwarrior25 (talk | contribs) |
Williamgolly (talk | contribs) (→Solution 2) |
||
Line 13: | Line 13: | ||
Next, we breakdown <math>\lfloor x\rfloor\cdot \{x\}</math> down for each interval <math>[n,n+1)</math>, where <math>n</math> is a positive integer. Assume <math>\lfloor x\rfloor=n</math>, then <math>\{x\}=x-n</math>. This means that when <math>x\in [n,n+1)</math>, <math>\lfloor x\rfloor \cdot \{x\}=n(x-n)=nx-n^2</math>. Setting this equal to <math>ax^2</math> gives | Next, we breakdown <math>\lfloor x\rfloor\cdot \{x\}</math> down for each interval <math>[n,n+1)</math>, where <math>n</math> is a positive integer. Assume <math>\lfloor x\rfloor=n</math>, then <math>\{x\}=x-n</math>. This means that when <math>x\in [n,n+1)</math>, <math>\lfloor x\rfloor \cdot \{x\}=n(x-n)=nx-n^2</math>. Setting this equal to <math>ax^2</math> gives | ||
<cmath>nx-n^2=ax^2\implies ax^2-nx+n^2=0 \implies x=\frac{n\pm \sqrt{n^2-4an^2}}{2a}</cmath> | <cmath>nx-n^2=ax^2\implies ax^2-nx+n^2=0 \implies x=\frac{n\pm \sqrt{n^2-4an^2}}{2a}</cmath> | ||
− | We're looking at the solution with | + | We're looking at the solution with the positive <math>x</math>, which is <math>x=\frac{n-n\sqrt{1-4a}}{2a}=\frac{n}{2a}\left(1-\sqrt{1-4a}\right)</math>. Note that if <math>\lfloor x\rfloor=n</math> is the greatest <math>n</math> such that <math>\lfloor x\rfloor \cdot \{x\}=ax^2</math> has a solution, the sum of all these solutions is slightly over <math>\sum_{k=1}^{n}k=\frac{n(n+1)}{2}</math>, which is <math>406</math> when <math>n=28</math>, just under <math>420</math>. Checking this gives |
<cmath>\sum_{k=1}^{28}\frac{k}{2a}\left(1-\sqrt{1-4a}\right)=\frac{1-\sqrt{1-4a}}{2a}\cdot 406=420</cmath> | <cmath>\sum_{k=1}^{28}\frac{k}{2a}\left(1-\sqrt{1-4a}\right)=\frac{1-\sqrt{1-4a}}{2a}\cdot 406=420</cmath> | ||
<cmath>\frac{1-\sqrt{1-4a}}{2a}=\frac{420}{406}=\frac{30}{29}</cmath> | <cmath>\frac{1-\sqrt{1-4a}}{2a}=\frac{420}{406}=\frac{30}{29}</cmath> |
Revision as of 11:48, 29 August 2020
Problem 25
The number , where and are relatively prime positive integers, has the property that the sum of all real numbers satisfying is , where denotes the greatest integer less than or equal to and denotes the fractional part of . What is ?
Solution 1
Let be the unique solution in this range. Note that is also a solution as long as , hence all our solutions are for some . This sum must be between and , which gives and . Plugging this back in gives .
Solution 2
First note that when while . Thus we only need to look at positive solutions ( doesn't affect the sum of the solutions). Next, we breakdown down for each interval , where is a positive integer. Assume , then . This means that when , . Setting this equal to gives We're looking at the solution with the positive , which is . Note that if is the greatest such that has a solution, the sum of all these solutions is slightly over , which is when , just under . Checking this gives ~ktong
Solution 3 (Geometry)
This video shows how things like The Pythagorean Theorem and The Law of Sines work together to solve this seemingly algebraic problem: https://www.youtube.com/watch?v=6IJ7Jxa98zw&feature=youtu.be
Video Solution
https://www.youtube.com/watch?v=xex8TBSzKNE ~ MathEx
See Also
2020 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 24 |
Followed by Last Problem |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.