Difference between revisions of "1993 AIME Problems/Problem 15"
Phoenixfire (talk | contribs) (→Solution) |
Phoenixfire (talk | contribs) |
||
Line 45: | Line 45: | ||
Plugging in <math>n=1994</math> yields that the answer is <math>\frac{1992}{2(1995)}</math>, which simplifies to <math>\frac{332}{665}</math> | Plugging in <math>n=1994</math> yields that the answer is <math>\frac{1992}{2(1995)}</math>, which simplifies to <math>\frac{332}{665}</math> | ||
+ | ------------------------ | ||
+ | Edit by phoenixfire: | ||
+ | |||
+ | It can further be shown for any triangle with sides <math>a=BC, b=CA, c=AB</math> that | ||
+ | <cmath>RS=\dfrac{|b-a|}{2c}|a+b-c|</cmath>. | ||
+ | Over here <math>a=1993, b=1994, c=1995</math>. | ||
== See also == | == See also == |
Revision as of 02:26, 28 December 2020
Problem
Let be an altitude of . Let and be the points where the circles inscribed in the triangles and are tangent to . If , , and , then can be expressed as , where and are relatively prime integers. Find .
Solution
From the Pythagorean Theorem, , and .
Subtracting those two equations yields .
After simplification, we see that , or .
Note that .
Therefore we have that .
Therefore .
Now note that , , and .
Therefore we have .
Plugging in and simplifying, we have .
Edit by GameMaster402:
It can be shown that in any triangle with side lengths , if you draw an altitude from the vertex to the side of , and draw the incircles of the two right triangles, the distance between the two tangency points is simply .
Plugging in yields that the answer is , which simplifies to
Edit by phoenixfire:
It can further be shown for any triangle with sides that . Over here .
See also
1993 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Last question | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.