Difference between revisions of "2011 AIME I Problems/Problem 14"
Aops turtle (talk | contribs) m (→Solution 2) |
Aops turtle (talk | contribs) m (→Solution 1) |
||
Line 22: | Line 22: | ||
Extend <math>\overline{A_1 A_2}</math> and <math>\overline{A_3 A_4}</math> until they intersect. Denote their intersection as <math>I_1</math>. Through similar triangles & the <math>45-45-90</math> triangles formed, we find that <math>M_1 M_3=\frac{k}{2}(2+\sqrt2)</math>. | Extend <math>\overline{A_1 A_2}</math> and <math>\overline{A_3 A_4}</math> until they intersect. Denote their intersection as <math>I_1</math>. Through similar triangles & the <math>45-45-90</math> triangles formed, we find that <math>M_1 M_3=\frac{k}{2}(2+\sqrt2)</math>. | ||
− | We also have that<math>\triangle M_7 B_7 M_1 =\triangle M_1 B_1 M_3</math> through ASA congruence (<math>\angle B_7 M_7 M_1 =\angle B_1 M_1 M_3</math>, <math>M_7 M_1 = M_1 M_3</math>, <math>\angle B_7 M_1 M_7 =\angle B_1 M_3 M_1</math>). Therefore, we may let <math>n=M_1 B_7 = M_3 B_1</math>. | + | We also have that <math>\triangle M_7 B_7 M_1 =\triangle M_1 B_1 M_3</math> through ASA congruence (<math>\angle B_7 M_7 M_1 =\angle B_1 M_1 M_3</math>, <math>M_7 M_1 = M_1 M_3</math>, <math>\angle B_7 M_1 M_7 =\angle B_1 M_3 M_1</math>). Therefore, we may let <math>n=M_1 B_7 = M_3 B_1</math>. |
Thus, we have that <math>\sin\theta=\frac{n-k}{\frac{k}{2}(2+\sqrt2)}</math> and that <math>\cos\theta=\frac{n}{\frac{k}{2}(2+\sqrt2)}</math>. Therefore <math>\cos\theta-\sin\theta=\frac{k}{\frac{k}{2}(2+\sqrt2)}=\frac{2}{2+\sqrt2}=2-\sqrt2</math>. | Thus, we have that <math>\sin\theta=\frac{n-k}{\frac{k}{2}(2+\sqrt2)}</math> and that <math>\cos\theta=\frac{n}{\frac{k}{2}(2+\sqrt2)}</math>. Therefore <math>\cos\theta-\sin\theta=\frac{k}{\frac{k}{2}(2+\sqrt2)}=\frac{2}{2+\sqrt2}=2-\sqrt2</math>. |
Revision as of 20:12, 18 August 2020
Problem
Let be a regular octagon. Let
,
,
, and
be the midpoints of sides
,
,
, and
, respectively. For
, ray
is constructed from
towards the interior of the octagon such that
,
,
, and
. Pairs of rays
and
,
and
,
and
, and
and
meet at
,
,
,
respectively. If
, then
can be written in the form
, where
and
are positive integers. Find
.
Solution 1
Let . Thus we have that
.
Since is a regular octagon and
, let
.
Extend and
until they intersect. Denote their intersection as
. Through similar triangles & the
triangles formed, we find that
.
We also have that through ASA congruence (
,
,
). Therefore, we may let
.
Thus, we have that and that
. Therefore
.
Squaring gives that and consequently that
through the identities
and
.
Thus we have that . Therefore
.
Solution 2
Let . Then
and
are the projections of
and
onto the line
, so
, where
. Then since
,
, and
.
Solution 3
Notice that and
are parallel (
is a square by symmetry and since the rays are perpendicular) and
the distance between the parallel rays. If the regular hexagon as a side length of
, then
has a length of
. Let
be on
such that
is perpendicular to
, and
. The distance between
and
is
, so
.
Since we are considering a regular hexagon, is directly opposite to
and
. All that's left is to calculate
. By drawing a right triangle or using the Pythagorean identity,
and
, so
.
Solution 4
Assume that
Denote the center
, and the midpoint of
and
as
. Then we have that
Thus, by the cosine double-angle theorem,
so
.
Diagram
All distances are to scale.
See also
2011 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.