Difference between revisions of "2010 AMC 12A Problems/Problem 3"

m (Solution)
m (Solution)
Line 48: Line 48:
  
 
This helps us to see that <math>AD=a/5</math> and <math>AB=2a</math>, where <math>a=EF</math>.
 
This helps us to see that <math>AD=a/5</math> and <math>AB=2a</math>, where <math>a=EF</math>.
Hence <math>\dfrac{AB}{AD}=\dfrac{2a}{a/5}=\boxed{(E) 10}</math>.
+
Hence <math>\dfrac{AB}{AD}=\dfrac{2a}{a/5}=</math>\boxed{\textbf{(E)} 10}.
  
 
== See also ==
 
== See also ==

Revision as of 17:04, 3 August 2020

Problem

Rectangle $ABCD$, pictured below, shares $50\%$ of its area with square $EFGH$. Square $EFGH$ shares $20\%$ of its area with rectangle $ABCD$. What is $\frac{AB}{AD}$?

[asy] unitsize(1mm); defaultpen(linewidth(.8pt)+fontsize(8pt));  draw((0,0)--(0,25)--(25,25)--(25,0)--cycle); fill((0,20)--(0,15)--(25,15)--(25,20)--cycle,gray); draw((0,15)--(0,20)--(25,20)--(25,15)--cycle); draw((25,15)--(25,20)--(50,20)--(50,15)--cycle);  label("$A$",(0,20),W); label("$B$",(50,20),E); label("$C$",(50,15),E); label("$D$",(0,15),W); label("$E$",(0,25),NW); label("$F$",(25,25),NE); label("$G$",(25,0),SE); label("$H$",(0,0),SW); [/asy]

$\textbf{(A)}\ 4 \qquad \textbf{(B)}\ 5 \qquad \textbf{(C)}\ 6 \qquad \textbf{(D)}\ 8 \qquad \textbf{(E)}\ 10$

Solution

If we shift $A$ to coincide with $E$, and add new horizontal lines to divide $EFGH$ into five equal parts:

[asy] unitsize(1mm); defaultpen(linewidth(.8pt)+fontsize(8pt));  draw((0,0)--(0,25)--(25,25)--(25,0)--cycle); fill((0,25)--(0,20)--(25,20)--(25,25)--cycle,gray); draw((25,20)--(25,25)--(50,25)--(50,20)--cycle); draw((0,5)--(25,5)); draw((0,10)--(25,10)); draw((0,15)--(25,15));  label("$A=E$",(0,25),W); label("$B$",(50,25),E); label("$C$",(50,20),E); label("$D$",(0,20),W); label("$F$",(25,25),NE); label("$G$",(25,0),SE); label("$H$",(0,0),SW); [/asy]

This helps us to see that $AD=a/5$ and $AB=2a$, where $a=EF$. Hence $\dfrac{AB}{AD}=\dfrac{2a}{a/5}=$\boxed{\textbf{(E)} 10}.

See also

2010 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png