Difference between revisions of "1995 AIME Problems/Problem 7"
(fmt) |
|||
Line 2: | Line 2: | ||
Given that <math>\displaystyle (1+\sin t)(1+\cos t)=5/4</math> and | Given that <math>\displaystyle (1+\sin t)(1+\cos t)=5/4</math> and | ||
:<math>(1-\sin t)(1-\cos t)=\frac mn-\sqrt{k},</math> | :<math>(1-\sin t)(1-\cos t)=\frac mn-\sqrt{k},</math> | ||
− | where <math>\displaystyle k, m,</math> and <math>\displaystyle n_{}</math> are positive | + | where <math>\displaystyle k, m,</math> and <math>\displaystyle n_{}</math> are [[positive integer]]s with <math>\displaystyle m_{}</math> and <math>\displaystyle n_{}</math> [[relatively prime]], find <math>\displaystyle k+m+n.</math> |
== Solution == | == Solution == | ||
+ | From the givens, | ||
+ | <math>2\sin t \cos t + 2 \sin t + 2 \cos t = \frac{1}{2}</math>, and adding <math>\sin^2 t + \cos^2t = 1</math> to both sides gives <math>(\sin t + \cos t)^2 + 2(\sin t + \cos t) = \frac{3}{2}</math>. Completing the square on the left in the variable <math>(\sin t + \cos t)</math> gives <math>\sin t + \cos t = -1 \pm \sqrt{\frac{5}{2}}</math>. Since <math>|\sin t + \cos t| \leq \sqrt 2 < 1 + \sqrt{\frac{5}{2}}</math>, we have <math>\sin t + \cos t = \sqrt{5}{2} - 1</math>. Subtracting twice this from our original equation gives <math>(\sin t - 1)(\cos t - 1) = \sin t \cos t - \sin t - \cos t + 1 = \frac{13}{4} - \sqrt{10}</math>, so the answer is <math>13 + 4 + 10 = 027</math>. | ||
== See also == | == See also == | ||
− | + | {{AIME box|year=1995|num-b=6|num-a=8}} | |
− | + | [[Category:Intermediate Trigonometry Problems]] |
Revision as of 22:18, 8 February 2007
Problem
Given that and
where and are positive integers with and relatively prime, find
Solution
From the givens, , and adding to both sides gives . Completing the square on the left in the variable gives . Since , we have . Subtracting twice this from our original equation gives , so the answer is .
See also
1995 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |