Difference between revisions of "2019 AIME I Problems/Problem 3"
Line 1: | Line 1: | ||
− | ==Problem | + | ==Problem== |
In <math>\triangle PQR</math>, <math>PR=15</math>, <math>QR=20</math>, and <math>PQ=25</math>. Points <math>A</math> and <math>B</math> lie on <math>\overline{PQ}</math>, points <math>C</math> and <math>D</math> lie on <math>\overline{QR}</math>, and points <math>E</math> and <math>F</math> lie on <math>\overline{PR}</math>, with <math>PA=QB=QC=RD=RE=PF=5</math>. Find the area of hexagon <math>ABCDEF</math>. | In <math>\triangle PQR</math>, <math>PR=15</math>, <math>QR=20</math>, and <math>PQ=25</math>. Points <math>A</math> and <math>B</math> lie on <math>\overline{PQ}</math>, points <math>C</math> and <math>D</math> lie on <math>\overline{QR}</math>, and points <math>E</math> and <math>F</math> lie on <math>\overline{PR}</math>, with <math>PA=QB=QC=RD=RE=PF=5</math>. Find the area of hexagon <math>ABCDEF</math>. | ||
Revision as of 01:22, 16 February 2021
Contents
Problem
In , , , and . Points and lie on , points and lie on , and points and lie on , with . Find the area of hexagon .
Diagram
Solution 1
We know the area of the hexagon to be . Since , we know that is a right triangle. Thus the area of is . Another way to compute the area is Then the area of . Preceding in a similar fashion for , the area of is . Since , the area of . Thus our desired answer is
Solution 2
Let be the origin. Noticing that the triangle is a 3-4-5 right triangle, we can see that , and . Using the shoelace theorem, the area is . Shoelace theorem:Suppose the polygon has vertices , , ... , , listed in clockwise order. Then the area of is
You can also go counterclockwise order, as long as you find the absolute value of the answer.
.
Solution 3 (Easiest, uses only basic geometry too)
Note that has area and is a -- right triangle. Then, by similar triangles, the altitude from to has length and the altitude from to has length , so , meaning that . -Stormersyle
Solution 4
Knowing that has area and is a -- triangle, we can find the area of the smaller triangles , , and and subtract them from to obtain our answer. First off, we know has area since it is a right triangle. To the find the areas of and , we can use Law of Cosines () to find the lengths of and , respectively. Computing gives and . Now, using Heron's Formula, we find and . Adding these and subtracting from , we get -Starsher
Video Solution
https://www.youtube.com/watch?v=4jOfXNiQ6WM
Video Solution 2
https://youtu.be/TSKcjht8Rfk?t=941
~IceMatrix
Video Solution 3
~Shreyas S
See Also
2019 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 2 |
Followed by Problem 4 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.