Difference between revisions of "2004 AMC 10A Problems/Problem 20"
(→Solution 1) |
(→Solution 2 (Non-trig)) |
||
Line 10: | Line 10: | ||
Since triangle <math>BEF</math> is equilateral, <math>EA=FC</math>, and <math>EAB</math> and <math>FCB</math> are <math>SAS</math> congruent. Thus, triangle <math>DEF</math> is an isosceles right triangle. So we let <math>DE=x</math>. Thus <math>EF=EB=FB=x\sqrt{2}</math>. If we go angle chasing, we find out that <math>\angle AEB=75^{\circ}</math>, thus <math>\angle ABE=15^{\circ}</math>. <math>\frac{AE}{EB}=\sin{15^{\circ}}=\frac{\sqrt{6}-\sqrt{2}}{4}</math>. Thus <math>\frac{AE}{x\sqrt{2}}=\frac{\sqrt{6}-\sqrt{2}}{4}</math>, or <math>AE=\frac{x(\sqrt{3}-1)}{2}</math>. Thus <math>AB=\frac{x(\sqrt{3}+1)}{2}</math>, and <math>[ABE]=\frac{x^2}{4}</math>, and <math>[DEF]=\frac{x^2}{2}</math>. Thus the ratio of the areas is <math>\boxed{\mathrm{(D)}\ 2}</math> | Since triangle <math>BEF</math> is equilateral, <math>EA=FC</math>, and <math>EAB</math> and <math>FCB</math> are <math>SAS</math> congruent. Thus, triangle <math>DEF</math> is an isosceles right triangle. So we let <math>DE=x</math>. Thus <math>EF=EB=FB=x\sqrt{2}</math>. If we go angle chasing, we find out that <math>\angle AEB=75^{\circ}</math>, thus <math>\angle ABE=15^{\circ}</math>. <math>\frac{AE}{EB}=\sin{15^{\circ}}=\frac{\sqrt{6}-\sqrt{2}}{4}</math>. Thus <math>\frac{AE}{x\sqrt{2}}=\frac{\sqrt{6}-\sqrt{2}}{4}</math>, or <math>AE=\frac{x(\sqrt{3}-1)}{2}</math>. Thus <math>AB=\frac{x(\sqrt{3}+1)}{2}</math>, and <math>[ABE]=\frac{x^2}{4}</math>, and <math>[DEF]=\frac{x^2}{2}</math>. Thus the ratio of the areas is <math>\boxed{\mathrm{(D)}\ 2}</math> | ||
− | ==Solution | + | ==Solution 3 (Non-trig) == |
WLOG, let the side length of <math>ABCD</math> be 1. Let <math>DE = x</math>. It suffices that <math>AE = 1 - x</math>. Then triangles <math>ABE</math> and <math>CBF</math> are congruent by HL, so <math>CF = AE</math> and <math>DE = DF</math>. We find that <math>BE = EF = x \sqrt{2}</math>, and so, by the Pythagorean Theorem, we have | WLOG, let the side length of <math>ABCD</math> be 1. Let <math>DE = x</math>. It suffices that <math>AE = 1 - x</math>. Then triangles <math>ABE</math> and <math>CBF</math> are congruent by HL, so <math>CF = AE</math> and <math>DE = DF</math>. We find that <math>BE = EF = x \sqrt{2}</math>, and so, by the Pythagorean Theorem, we have | ||
<math>(1 - x)^2 + 1 = 2x^2.</math> This yields <math>x^2 + 2x = 2</math>, so <math>x^2 = 2 - 2x</math>. Thus, the desired ratio of areas is | <math>(1 - x)^2 + 1 = 2x^2.</math> This yields <math>x^2 + 2x = 2</math>, so <math>x^2 = 2 - 2x</math>. Thus, the desired ratio of areas is |
Revision as of 14:32, 16 July 2020
Problem
Points and are located on square so that is equilateral. What is the ratio of the area of to that of ?
Solution 1
Solution 2
Since triangle is equilateral, , and and are congruent. Thus, triangle is an isosceles right triangle. So we let . Thus . If we go angle chasing, we find out that , thus . . Thus , or . Thus , and , and . Thus the ratio of the areas is
Solution 3 (Non-trig)
WLOG, let the side length of be 1. Let . It suffices that . Then triangles and are congruent by HL, so and . We find that , and so, by the Pythagorean Theorem, we have This yields , so . Thus, the desired ratio of areas is
Solution 3
is equilateral, so , and so they must each be . Then let , which gives and . The area of is then . is an isosceles right triangle with hypotenuse 1, so and therefore its area is . The ratio of areas is then
Solution 4
First, since is equilateral and is a square, by the Hypothenuse Leg Theorem, is congruent to . Then, assume length and length , then . is equilateral, so and , it is given that is a square and and are right triangles. Then we use the Pythagorean theorem to prove that and since we know that and , which means . Now we plug in the variables and the equation becomes , expand and simplify and you get . We want the ratio of area of to . Expressed in our variables, the ratio of the area is and we know , so the ratio must be 2. Choice D