Difference between revisions of "1976 AHSME Problems/Problem 2"
(→Solution) |
(→1976 AHSME Problems) |
||
Line 11: | Line 11: | ||
<math>\sqrt{-(x+1)^2}</math> is a real number, if and only if <math>-(x+1)^2</math> is nonnegative. Since <math>(x+1)^2</math> is always nonnegative, <math>-(x+1)^2</math> is nonnegative only when <math>-(x+1)^2=0</math>, or when <math>x=-1 \Rightarrow \textbf{(B)}</math>. | <math>\sqrt{-(x+1)^2}</math> is a real number, if and only if <math>-(x+1)^2</math> is nonnegative. Since <math>(x+1)^2</math> is always nonnegative, <math>-(x+1)^2</math> is nonnegative only when <math>-(x+1)^2=0</math>, or when <math>x=-1 \Rightarrow \textbf{(B)}</math>. | ||
− | |||
− | |||
− | |||
− |
Revision as of 19:03, 12 July 2020
Problem 2
For how many real numbers is a real number?
Solution
is a real number, if and only if is nonnegative. Since is always nonnegative, is nonnegative only when , or when .