Difference between revisions of "2020 USOJMO Problems/Problem 4"
Xxins1c1vexx (talk | contribs) (Solution 3) |
|||
Line 33: | Line 33: | ||
~MortemEtInteritum | ~MortemEtInteritum | ||
+ | |||
+ | ==Solution 3 (Angle-Chasing)== | ||
+ | Proving that <math>FB=FD</math> is equivalent to proving that <math>\angle FBD= \angle FDB</math>. Note that <math>\angle FBD=\angle ACD</math> because quadrilateral <math>ABCD</math> is cyclic. Also note that <math>\angle BAC=\angle ACB</math> because <math>AB=BC</math>. <math>AE=EC</math>, which follows from the facts that <math>BE \perp AC</math> and <math>AB=AC</math>, implies that <math>\angle CAE= \angle ACE= \angle ACD= \angle FBD</math>. Thus, we would like to prove that triangle <math>FBD</math> is similar to triangle <math>AEC</math>. In order for this to be true, then <math>\angle BFD</math> must equal <math>\angle AEC</math> which implies that <math>\angle AFD</math> must equal <math>\angle AED</math>. In order for this to be true, then quadrilateral <math>AFED</math> must be cyclic. Using the fact that <math>EF \parallel BC</math>, we get that <math>\angle AFE= \angle ABC</math>, and that <math>\angle FED= \angle BCE</math>, and thus we have proved that quadrilateral <math>AFED</math> is cyclic. Therefore, triangle <math>FDB</math> is similar to isosceles triangle <math>AEC</math> from AA and thus <math>FB=FD</math>. | ||
+ | |||
+ | -xXINs1c1veXx |
Revision as of 12:49, 11 August 2020
Problem
Let be a convex quadrilateral inscribed in a circle and satisfying . Points and are chosen on sides and such that and . Prove that .
Solution
Let be the intersection of and and be the intersection of and .
Claim:
By Pascal's on , we see that the intersection of and , , and are collinear. Since , we know that as well.
Note that since all cyclic trapezoids are isosceles, . Since and , we know that , from which we have that is an isosceles trapezoid and . It follows that , so is an isosceles trapezoid, from which , as desired.
Solution 2
Let , and let . Now let and .
From and , we have so . From cyclic quadrilateral ABCD, . Since , .
Now from cyclic quadrilateral ABC and we have . Thus F, A, D, and E are concyclic, and Let this be statement 1.
Now since , triangle ABC gives us . Thus , or .
Right triangle BHC gives , and implies
Now triangle BGE gives . But , so . Using triangle FGD and statement 1 gives
Thus, , so as desired.
~MortemEtInteritum
Solution 3 (Angle-Chasing)
Proving that is equivalent to proving that . Note that because quadrilateral is cyclic. Also note that because . , which follows from the facts that and , implies that . Thus, we would like to prove that triangle is similar to triangle . In order for this to be true, then must equal which implies that must equal . In order for this to be true, then quadrilateral must be cyclic. Using the fact that , we get that , and that , and thus we have proved that quadrilateral is cyclic. Therefore, triangle is similar to isosceles triangle from AA and thus .
-xXINs1c1veXx