Difference between revisions of "2015 AMC 10B Problems/Problem 25"
Indefintense (talk | contribs) |
Indefintense (talk | contribs) |
||
Line 4: | Line 4: | ||
<math>\textbf{(A)}\; 4 \qquad\textbf{(B)}\; 10 \qquad\textbf{(C)}\; 12 \qquad\textbf{(D)}\; 21 \qquad\textbf{(E)}\; 26</math> | <math>\textbf{(A)}\; 4 \qquad\textbf{(B)}\; 10 \qquad\textbf{(C)}\; 12 \qquad\textbf{(D)}\; 21 \qquad\textbf{(E)}\; 26</math> | ||
− | ==Solution== | + | ==Solution 1== |
The surface area is <math>2(ab+bc+ca)</math>, the volume is <math>abc</math>, so <math>2(ab+bc+ca)=abc</math>. | The surface area is <math>2(ab+bc+ca)</math>, the volume is <math>abc</math>, so <math>2(ab+bc+ca)=abc</math>. | ||
Line 30: | Line 30: | ||
Thus, our answer is <math>\boxed{\textbf{(B)}\;10}</math> | Thus, our answer is <math>\boxed{\textbf{(B)}\;10}</math> | ||
− | ==Simplification of Solution== | + | ==Simplification of Solution 1== |
The surface area is <math>2(ab+bc+ca)</math>, the volume is <math>abc</math>, so <math>2(ab+bc+ca)=abc</math>. | The surface area is <math>2(ab+bc+ca)</math>, the volume is <math>abc</math>, so <math>2(ab+bc+ca)=abc</math>. | ||
Line 50: | Line 50: | ||
- minor edit by Williamgolly, minor edit by Tiblis | - minor edit by Williamgolly, minor edit by Tiblis | ||
− | Solution | + | ==Solution 2== |
We need<cmath>abc = 2(ab+bc+ac) \quad \text{ or } \quad (a-2)bc = 2a(b+c).</cmath>Since <math>ab, ac \le bc</math>, we get <math>abc \le 6bc</math>. Thus <math>a\le 6</math>. From the second equation we see that <math>a > 2</math>. Thus <math>a\in \{3, 4, 5, 6\}</math>. | We need<cmath>abc = 2(ab+bc+ac) \quad \text{ or } \quad (a-2)bc = 2a(b+c).</cmath>Since <math>ab, ac \le bc</math>, we get <math>abc \le 6bc</math>. Thus <math>a\le 6</math>. From the second equation we see that <math>a > 2</math>. Thus <math>a\in \{3, 4, 5, 6\}</math>. | ||
Line 59: | Line 59: | ||
Thus, there are <math>5+3+1+1 = \boxed{\textbf{(B)}\; 10}</math> solutions. | Thus, there are <math>5+3+1+1 = \boxed{\textbf{(B)}\; 10}</math> solutions. | ||
− | Solution | + | ==Solution 3== |
The surface area is <math>2(ab+bc+ca)</math>, and the volume is <math>abc</math>, so equating the two yields | The surface area is <math>2(ab+bc+ca)</math>, and the volume is <math>abc</math>, so equating the two yields | ||
Revision as of 20:01, 5 July 2020
Problem
A rectangular box measures , where , , and are integers and . The volume and the surface area of the box are numerically equal. How many ordered triples are possible?
Solution 1
The surface area is , the volume is , so .
Divide both sides by , we have:
First consider the bound of the variable . Since we have , or .
Also note that , we have . Thus, , so .
So we have or .
Before the casework, let's consider the possible range for if .
From , we have . From , we have . Thus
When , , so . The solutions we find are , for a total of solutions.
When , , so . The solutions we find are , for a total of solutions.
When , , so . The only solution in this case is .
When , is forced to be , and thus .
Thus, our answer is
Simplification of Solution 1
The surface area is , the volume is , so .
Divide both sides by , we have: First consider the bound of the variable . Since we have , or .
Also note that , we have . Thus, , so .
So we have or .
We can say , where .
Notice that This is our key step. Then we can say , . If we clear the fraction about b and c (do the math), our immediate result is that . Realize also that .
Now go through cases for and you end up with the same result. However, now you don't have to guess solutions. For example, when , then and .
- minor edit by Williamgolly, minor edit by Tiblis
Solution 2
We needSince , we get . Thus . From the second equation we see that . Thus .
If we need . We get five roots If we need . We get three roots . If we need , which is the same as . We get only one root (corresponding to ) . If we need . Then . We get one root . Thus, there are solutions.
Solution 3
The surface area is , and the volume is , so equating the two yields
Divide both sides by to obtain First consider the bound of the variable . Since we have , or .
Also note that , hence . Thus, , so .
So we have or .
Before the casework, let's consider the possible range for if . From , we have . From , we have . Thus .
When , we get , so . We find the solutions , , , , , for a total of solutions.
When , we get , so . We find the solutions , , , for a total of solutions.
When , we get , so . The only solution in this case is .
When , is forced to be , and thus .
Thus, there are solutions.
See Also
2015 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 24 |
Followed by Last Question | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.