Difference between revisions of "User:Superagh"

(Theorems worth noting)
(Power mean)
Line 9: Line 9:
 
====Theorems worth noting====
 
====Theorems worth noting====
 
=====Power mean=====
 
=====Power mean=====
 +
Statement: Given that <math>a_1, a_2, a_3, ... a_n > 0</math>, <math>a_i \in \R</math> where <math>1 \leq i \leq n</math>. Define the <math>pm_x(a_1, a_2, \cdots , a_n)</math> as: <cmath>(\frac{a_1^x+a_2^x+\cdots+a_n^x}{n})^{\frac{1}{x}},</cmath> where <math>x\neq0</math>, and: <cmath>sqrt[n]{a_1a_2a_3\cdotsa_n}.</cmath> where <math>x=0</math>.
 +
 +
If <math>x\geqy</math>, then <cmath>pm_x(a_1, a_2, \cdots , a_n)\geqpm_y(a_1, a_2, \cdots , a_n).</cmath>
  
 
==Combinatorics==
 
==Combinatorics==

Revision as of 21:41, 23 June 2020

Introduction

Ok, so inspired by master math solver Lcz, I have decided to take Oly notes (for me) online! I'll probably be yelled at even more for staring at the computer, but I know that this is for my good. (Also this thing is almost the exact same format as Lcz's :P ). (Ok, actually, a LOT of credits to Lcz)

Algebra

Problems worth noting/reviewing

I'll leave this empty for now, I want to start on HARD stuff yeah!

Inequalities

We shall begin with INEQUALITIES! They should be fun enough. I should probably begin with some theorems.

Theorems worth noting

Power mean

Statement: Given that $a_1, a_2, a_3, ... a_n > 0$, $a_i \in \R$ (Error compiling LaTeX. Unknown error_msg) where $1 \leq i \leq n$. Define the $pm_x(a_1, a_2, \cdots , a_n)$ as: \[(\frac{a_1^x+a_2^x+\cdots+a_n^x}{n})^{\frac{1}{x}},\] where $x\neq0$, and:

\[sqrt[n]{a_1a_2a_3\cdotsa_n}.\] (Error compiling LaTeX. Unknown error_msg)

where $x=0$. If $x\geqy$ (Error compiling LaTeX. Unknown error_msg), then

\[pm_x(a_1, a_2, \cdots , a_n)\geqpm_y(a_1, a_2, \cdots , a_n).\] (Error compiling LaTeX. Unknown error_msg)

Combinatorics

Number Theory

Geometry