Difference between revisions of "2020 AIME II Problems/Problem 5"
(→Solution 2 (Official MAA)) |
(→Solution 2 (Official MAA)) |
||
Line 6: | Line 6: | ||
==Solution 2 (Official MAA)== | ==Solution 2 (Official MAA)== | ||
First note that if <math>h_b(s)</math> is the least positive integer whose digit sum, in some fixed base <math>b</math>, is <math>s</math>, then <math>h_b</math> is a strictly increasing function. This together with the fact that <math>g(N) \ge 10</math> shows that <math>f(N)</math> is the least positive integer whose base-eight digit sum is 10. Thus <math>f(N) = 37_\text{eight} = 31</math>, and <math>N</math> is the least positive integer whose base-four digit sum is <math>31.</math> Therefore <cmath> | First note that if <math>h_b(s)</math> is the least positive integer whose digit sum, in some fixed base <math>b</math>, is <math>s</math>, then <math>h_b</math> is a strictly increasing function. This together with the fact that <math>g(N) \ge 10</math> shows that <math>f(N)</math> is the least positive integer whose base-eight digit sum is 10. Thus <math>f(N) = 37_\text{eight} = 31</math>, and <math>N</math> is the least positive integer whose base-four digit sum is <math>31.</math> Therefore <cmath> | ||
− | N | + | N = 13333333333_\text{four} = 2\cdot4^{10} - 1 = 2\cdot1024^2 - 1</cmath> |
− | \equiv 2\cdot24^2 - 1 \equiv 151 \pmod{1000}.</cmath> | + | <cmath>\equiv 2\cdot24^2 - 1 \equiv 151 \pmod{1000}.</cmath> |
==Video Solution== | ==Video Solution== |
Revision as of 12:12, 8 June 2020
Contents
Problem
For each positive integer , left
be the sum of the digits in the base-four representation of
and let
be the sum of the digits in the base-eight representation of
. For example,
, and
. Let
be the least value of
such that the base-sixteen representation of
cannot be expressed using only the digits
through
. Find the remainder when
is divided by
.
Solution
Let's work backwards. The minimum base-sixteen representation of that cannot be expressed using only the digits
through
is
, which is equal to
in base 10. Thus, the sum of the digits of the base-eight representation of the sum of the digits of
is
. The minimum value for which this is achieved is
. We have that
. Thus, the sum of the digits of the base-four representation of
is
. The minimum value for which this is achieved is
. We just need this value in base 10 modulo 1000. We get
. Taking this value modulo
, we get the final answer of
. (If you are having trouble with this step, note that
) ~ TopNotchMath
Solution 2 (Official MAA)
First note that if is the least positive integer whose digit sum, in some fixed base
, is
, then
is a strictly increasing function. This together with the fact that
shows that
is the least positive integer whose base-eight digit sum is 10. Thus
, and
is the least positive integer whose base-four digit sum is
Therefore
Video Solution
https://youtu.be/lTyiRQTtIZI ~CNCM
Video Solution 2
~IceMatrix
See Also
2020 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 4 |
Followed by Problem 6 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.