Difference between revisions of "2020 AIME II Problems/Problem 5"
Topnotchmath (talk | contribs) |
Topnotchmath (talk | contribs) |
||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
+ | For each positive integer <math>n</math>, left <math>f(n)</math> be the sum of the digits in the base-four representation of <math>n</math> and let <math>g(n)</math> be the sum of the digits in the base-eight representation of <math>f(n)</math>. For example, <math>f(2020) = f(133210_{\text{four}}) = 10 = 12_{\text{eight}}</math>, and <math>g(2020) = \text{the digit sum of }12_{\text{eight}} = 3</math>. Let <math>N</math> be the least value of <math>n</math> such that the base-sixteen representation of <math>g(n)</math> cannot be expressed using only the digits <math>0</math> through <math>9</math>. Find the remainder when <math>N</math> is divided by <math>1000</math>. | ||
+ | ==Solution== | ||
==See Also== | ==See Also== | ||
{{AIME box|year=2020|n=II|num-b=4|num-a=6}} | {{AIME box|year=2020|n=II|num-b=4|num-a=6}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 22:09, 7 June 2020
Problem
For each positive integer , left be the sum of the digits in the base-four representation of and let be the sum of the digits in the base-eight representation of . For example, , and . Let be the least value of such that the base-sixteen representation of cannot be expressed using only the digits through . Find the remainder when is divided by .
Solution
See Also
2020 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 4 |
Followed by Problem 6 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.