Difference between revisions of "1995 AIME Problems"

m
m
Line 45: Line 45:
  
 
== Problem 9 ==
 
== Problem 9 ==
 +
Triangle <math>\displaystyle ABC</math> is isosceles, with <math>\displaystyle AB=AC</math> and altitude <math>\displaystyle AM=11.</math>  Suppose that there is a point <math>\displaystyle D</math> on <math>\displaystyle \overline{AM}</math> with <math>\displaystyle AD=10</math> and <math>\displaystyle \angle BDC=3\angle BAC.</math>  Then the perimeter of <math>\displaystyle \triangle ABC</math> may be written in the form <math>\displaystyle a+\sqrt{b},</math> where <math>\displaystyle a</math> and <math>\displaystyle b</math> are integers.  Find <math>\displaystyle a+b.</math>
 +
 +
[[Image:AIME_1995_Problem_9.png]]
  
 
[[1995 AIME Problems/Problem 9|Solution]]
 
[[1995 AIME Problems/Problem 9|Solution]]

Revision as of 00:21, 22 January 2007

Problem 1

Square $\displaystyle S_{1}$ is $1\times 1.$ For $i\ge 1,$ the lengths of the sides of square $\displaystyle S_{i+1}$ are half the lengths of the sides of square $\displaystyle S_{i},$ two adjacent sides of square $\displaystyle S_{i}$ are perpendicular bisectors of two adjacent sides of square $\displaystyle S_{i+1},$ and the other two sides of square $\displaystyle S_{i+1},$ are the perpendicular bisectors of two adjacent sides of square $\displaystyle S_{i+2}.$ The total area enclosed by at least one of $\displaystyle S_{1}, S_{2}, S_{3}, S_{4}, S_{5}$ can be written in the form $\displaystyle m/n,$ where $\displaystyle m$ and $\displaystyle n$ are relatively prime positive integers. Find $\displaystyle m-n.$

AIME 1995 Problem 1.png

Solution

Problem 2

Find the last three digits of the product of the positive roots of $\sqrt{1995}x^{\log_{1995}x}=x^2.$

Solution

Problem 3

Starting at $\displaystyle (0,0),$ an object moves in the coordinate plane via a sequence of steps, each of length one. Each step is left, right, up, or down, all four equally likely. Let $\displaystyle p$ be the probability that the object reaches $\displaystyle (2,2)$ in six or fewer steps. Given that $\displaystyle p$ can be written in the form $\displaystyle m/n,$ where $\displaystyle m$ and $\displaystyle n$ are relatively prime positive integers, find $\displaystyle m+n.$

Solution

Problem 4

Circles of radius $\displaystyle 3$ and $\displaystyle 6$ are externally tangent to each other and are internally tangent to a circle of radius $\displaystyle 9$. The circle of radius $\displaystyle 9$ has a chord that is a common external tangent of the other two circles. Find the square of the length of this chord.

Solution

Problem 5

For certain real values of $\displaystyle a, b, c,$ and $\displaystyle d_{},$ the equation $\displaystyle x^4+ax^3+bx^2+cx+d=0$ has four non-real roots. The product of two of these roots is $\displaystyle 13+i$ and the sum of the other two roots is $\displaystyle 3+4i,$ where $i=\sqrt{-1}.$ Find $\displaystyle b.$

Solution

Problem 6

Let $\displaystyle n=2^{31}3^{19}.$ How many positive integer divisors of $\displaystyle n^2$ are less than $\displaystyle n_{}$ but do not divide $\displaystyle n_{}$?

Solution

Problem 7

Given that $\displaystyle (1+\sin t)(1+\cos t)=5/4$ and

$(1-\sin t)(1-\cos t)=\frac mn-\sqrt{k},$

where $\displaystyle k, m,$ and $\displaystyle n_{}$ are positive integers with $\displaystyle m_{}$ and $\displaystyle n_{}$ relatively prime, find $\displaystyle k+m+n.$

Solution

Problem 8

For how many ordered pairs of positive integers $\displaystyle (x,y),$ with $\displaystyle y<x\le 100,$ are both $\displaystyle \frac xy$ and $\displaystyle \frac{x+1}{y+1}$ integers?

Solution

Problem 9

Triangle $\displaystyle ABC$ is isosceles, with $\displaystyle AB=AC$ and altitude $\displaystyle AM=11.$ Suppose that there is a point $\displaystyle D$ on $\displaystyle \overline{AM}$ with $\displaystyle AD=10$ and $\displaystyle \angle BDC=3\angle BAC.$ Then the perimeter of $\displaystyle \triangle ABC$ may be written in the form $\displaystyle a+\sqrt{b},$ where $\displaystyle a$ and $\displaystyle b$ are integers. Find $\displaystyle a+b.$

AIME 1995 Problem 9.png

Solution

Problem 10

Solution

Problem 11

Solution

Problem 12

Solution

Problem 13

Solution

Problem 14

Solution

Problem 15

Solution

See also