Difference between revisions of "1995 AIME Problems"
Line 1: | Line 1: | ||
== Problem 1 == | == Problem 1 == | ||
Square <math>\displaystyle S_{1}</math> is <math>1\times 1.</math> For <math>i\ge 1,</math> the lengths of the sides of square <math>\displaystyle S_{i+1}</math> are half the lengths of the sides of square <math>\displaystyle S_{i},</math> two adjacent sides of square <math>\displaystyle S_{i}</math> are perpendicular bisectors of two adjacent sides of square <math>\displaystyle S_{i+1},</math> and the other two sides of square <math>\displaystyle S_{i+1},</math> are the perpendicular bisectors of two adjacent sides of square <math>\displaystyle S_{i+2}.</math> The total area enclosed by at least one of <math>\displaystyle S_{1}, S_{2}, S_{3}, S_{4}, S_{5}</math> can be written in the form <math>\displaystyle m/n,</math> where <math>\displaystyle m</math> and <math>\displaystyle n</math> are relatively prime positive integers. Find <math>\displaystyle m-n.</math> | Square <math>\displaystyle S_{1}</math> is <math>1\times 1.</math> For <math>i\ge 1,</math> the lengths of the sides of square <math>\displaystyle S_{i+1}</math> are half the lengths of the sides of square <math>\displaystyle S_{i},</math> two adjacent sides of square <math>\displaystyle S_{i}</math> are perpendicular bisectors of two adjacent sides of square <math>\displaystyle S_{i+1},</math> and the other two sides of square <math>\displaystyle S_{i+1},</math> are the perpendicular bisectors of two adjacent sides of square <math>\displaystyle S_{i+2}.</math> The total area enclosed by at least one of <math>\displaystyle S_{1}, S_{2}, S_{3}, S_{4}, S_{5}</math> can be written in the form <math>\displaystyle m/n,</math> where <math>\displaystyle m</math> and <math>\displaystyle n</math> are relatively prime positive integers. Find <math>\displaystyle m-n.</math> | ||
+ | |||
+ | [[Image:AIME 1995 Problem 1.png]] | ||
[[1995 AIME Problems/Problem 1|Solution]] | [[1995 AIME Problems/Problem 1|Solution]] |
Revision as of 20:49, 21 January 2007
Contents
Problem 1
Square is
For
the lengths of the sides of square
are half the lengths of the sides of square
two adjacent sides of square
are perpendicular bisectors of two adjacent sides of square
and the other two sides of square
are the perpendicular bisectors of two adjacent sides of square
The total area enclosed by at least one of
can be written in the form
where
and
are relatively prime positive integers. Find