|
|
Line 14: |
Line 14: |
| | | |
| == Solution == | | == Solution == |
− |
| |
− | Noticing the variables and them being multiplied together, we try to find a good factorization. After trying a few, we stumble upon something in the form of <cmath>(x+*)(y+*)(z+*)</cmath> where the blanks should be filled in with numbers.
| |
− | Filling in as <cmath>(x+4)(y+2)(z+1)</cmath> gives <cmath>2x+4y+8z+xy+4yz+2xz+xyz+8</cmath>, and all parts happen to be multiples of the given equations. After substitution, we get <cmath>(x+4)(y+2)(z+1)=60</cmath>.
| |
Revision as of 14:45, 7 May 2020