Difference between revisions of "2018 AMC 8 Problems/Problem 21"
(→Solution 1) |
Xiaopanda1 (talk | contribs) (→Video Solution) |
||
Line 9: | Line 9: | ||
==Video Solution== | ==Video Solution== | ||
− | https://www.youtube.com/watch?v=CPQpkpnEuIc - | + | https://www.youtube.com/watch?v=CPQpkpnEuIc - Happytwinn |
==See Also== | ==See Also== |
Revision as of 13:29, 14 June 2020
Problem 21
How many positive three-digit integers have a remainder of 2 when divided by 6, a remainder of 5 when divided by 9, and a remainder of 7 when divided by 11?
Solution 1
Looking at the values, we notice that , and . This means we are looking for a value that is four less than a multiple of , , and . The least common multiple of these numbers is , so the numbers that fulfill this can be written as , where is a positive integer. This value is only a three digit integer when is or , which gives and respectively. Thus we have values, so our answer is
Video Solution
https://www.youtube.com/watch?v=CPQpkpnEuIc - Happytwinn
See Also
2018 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 20 |
Followed by Problem 22 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.