Difference between revisions of "The Apple Method"

(Examples)
Line 13: Line 13:
  
 
3. Evaluate: <cmath>\frac{1^2+2^2+3^2+\cdots}{1^2+3^3+5^2+\cdots}</cmath>
 
3. Evaluate: <cmath>\frac{1^2+2^2+3^2+\cdots}{1^2+3^3+5^2+\cdots}</cmath>
 +
 +
==Extensions==
 +
=The pear method=
 +
When more than one variable is needed, pears, bananas, etc. are usually used.

Revision as of 11:33, 18 April 2020

The Apple Method is a method for solving algebra problems. An apple is used to make a clever algebraic substitution.

Examples

1. Evaluate: \[\sqrt{6+\sqrt{6+\sqrt{6+\cdots}}}\]

$\emph{Solution:}$

If we set $\textcolor{red}{(\textcolor{green}{^{^(}})}=\sqrt{6+\sqrt{6+\sqrt{6+\cdots}}}$, we can see that $\textcolor{red}{(\textcolor{green}{^{^(}})}^2= 6+\textcolor{red}{(\textcolor{green}{^{^(}})}$.

Solving, we get $\textcolor{red}{(\textcolor{green}{^{^(}})}=\boxed{3}$

2. If \[\sqrt{x\cdot\sqrt{x\cdot\sqrt{x\cdots}}} = 5\]Find x.

3. Evaluate: \[\frac{1^2+2^2+3^2+\cdots}{1^2+3^3+5^2+\cdots}\]

Extensions

The pear method

When more than one variable is needed, pears, bananas, etc. are usually used.