Difference between revisions of "The Apple Method"

(Examples)
(Examples)
Line 10: Line 10:
 
Solving, we get <math>\textcolor{red}{(\textcolor{green}{^{^(}})}=\boxed{3}</math>
 
Solving, we get <math>\textcolor{red}{(\textcolor{green}{^{^(}})}=\boxed{3}</math>
  
2. Evaluate: <cmath>\frac{1^2+2^2+3^2+\cdots}{1^2+3^3+5^2+\cdots}</cmath>
+
2. If <cmath>\sqrt{x\cdot\sqrt{x\cdot\sqrt{x\cdots}}} = 5</cmath>Find x.
 +
 
 +
3. Evaluate: <cmath>\frac{1^2+2^2+3^2+\cdots}{1^2+3^3+5^2+\cdots}</cmath>

Revision as of 21:36, 24 March 2020

The Apple Method is a method for solving algebra problems. An apple is used to make a clever algebraic substitution.

Examples

1. Evaluate: \[\sqrt{6+\sqrt{6+\sqrt{6+\cdots}}}\]

$\emph{Solution:}$

If we set $\textcolor{red}{(\textcolor{green}{^{^(}})}=\sqrt{6+\sqrt{6+\sqrt{6+\cdots}}}$, we can see that $\textcolor{red}{(\textcolor{green}{^{^(}})}^2= 6+\textcolor{red}{(\textcolor{green}{^{^(}})}$.

Solving, we get $\textcolor{red}{(\textcolor{green}{^{^(}})}=\boxed{3}$

2. If \[\sqrt{x\cdot\sqrt{x\cdot\sqrt{x\cdots}}} = 5\]Find x.

3. Evaluate: \[\frac{1^2+2^2+3^2+\cdots}{1^2+3^3+5^2+\cdots}\]