Difference between revisions of "The Apple Method"

(Examples)
(Examples)
Line 2: Line 2:
 
An apple is used to make a clever algebraic substitution.
 
An apple is used to make a clever algebraic substitution.
 
==Examples==
 
==Examples==
Evaluate: <cmath>\sqrt{6+\sqrt{6+\sqrt{6+\cdots}}}</cmath>
+
1. Evaluate: <cmath>\sqrt{6+\sqrt{6+\sqrt{6+\cdots}}}</cmath>
  
 
<math>\emph{Solution:}</math>
 
<math>\emph{Solution:}</math>
Line 9: Line 9:
  
 
Solving, we get <math>\boxed{apple = 3}</math>
 
Solving, we get <math>\boxed{apple = 3}</math>
 +
<math>(^()</math>

Revision as of 13:17, 21 March 2020

The Apple Method is a method for solving algebra problems. An apple is used to make a clever algebraic substitution.

Examples

1. Evaluate: \[\sqrt{6+\sqrt{6+\sqrt{6+\cdots}}}\]

$\emph{Solution:}$

If we set $apple = \sqrt{6+\sqrt{6+\sqrt{6+\cdots}}}$, we can see that $apple = \sqrt{6+apple}$.

Solving, we get $\boxed{apple = 3}$ $(^()$