Difference between revisions of "1976 AHSME Problems/Problem 27"
(→Solution) |
|||
Line 1: | Line 1: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==Solution== | ==Solution== | ||
Line 17: | Line 7: | ||
<math>\frac{\sqrt{(\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2})^2}}{\sqrt{\sqrt{5}+1}} = \frac{\sqrt{(\sqrt{5}+2)+(\sqrt{5}-2)+2( | <math>\frac{\sqrt{(\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2})^2}}{\sqrt{\sqrt{5}+1}} = \frac{\sqrt{(\sqrt{5}+2)+(\sqrt{5}-2)+2( | ||
\sqrt{(\sqrt{5}+2)(\sqrt{5}-2)}}}{\sqrt{\sqrt{5}+1}} = \frac{\sqrt{2\sqrt5+2\sqrt{(\sqrt5)^2-2^2}}}{\sqrt{\sqrt{5}+1}} = | \sqrt{(\sqrt{5}+2)(\sqrt{5}-2)}}}{\sqrt{\sqrt{5}+1}} = \frac{\sqrt{2\sqrt5+2\sqrt{(\sqrt5)^2-2^2}}}{\sqrt{\sqrt{5}+1}} = | ||
− | \frac{\sqrt{2\sqrt5+2\sqrt{1}}}{\sqrt{\sqrt5+1}}</math> | + | \frac{\sqrt{2\sqrt5+2\sqrt{1}}}{\sqrt{\sqrt5+1}} = |
+ | \frac{\sqrt{2\sqrt5+2}}{\sqrt{\sqrt5+1}} = \frac{(\sqrt{2})(\sqrt{\sqrt5+1})}{\sqrt{\sqrt5+1}} = \sqrt2</math>. | ||
+ | |||
+ | Now for the right side. | ||
+ | |||
+ | <math>\sqrt{3-2\sqrt2} = \sqrt{(1-\sqrt2)^2} = 1-\sqrt2</math> | ||
+ | |||
+ | Putting it all together gives: | ||
+ | |||
+ | <math>(\sqrt2)+(1-\sqrt2)=\boxed{(A) 1}.</math> |
Revision as of 17:48, 20 March 2020
Solution
We will split this problem into two parts: The fraction on the left and the square root on the right.
Starting with the fraction on the left, begin by squaring the numerator and putting a square root around it. It becomes
.
Now for the right side.
Putting it all together gives: