Difference between revisions of "2020 AIME I Problems/Problem 12"
Kevinmathz (talk | contribs) (→Solution) |
Kevinmathz (talk | contribs) |
||
Line 1: | Line 1: | ||
− | |||
− | |||
== Problem == | == Problem == | ||
Let <math>n</math> be the least positive integer for which <math>149^n-2^n</math> is divisible by <math>3^3\cdot5^5\cdot7^7.</math> Find the number of positive integer divisors of <math>n.</math> | Let <math>n</math> be the least positive integer for which <math>149^n-2^n</math> is divisible by <math>3^3\cdot5^5\cdot7^7.</math> Find the number of positive integer divisors of <math>n.</math> |
Revision as of 16:15, 12 March 2020
Problem
Let be the least positive integer for which is divisible by Find the number of positive integer divisors of
Solution
Lifting the Exponent shows that so thus, divides . It also shows that so thus, divides .
Now, multiplying by , we see and since and then meaning that we have that by LTE, divides .
Since , and all divide , the smallest value of working is their LCM, also . Thus the number of divisors is .
~kevinmathz
See Also
2020 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 11 |
Followed by Problem 13 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.