Difference between revisions of "2019 AIME I Problems/Problem 8"
m (→Solution 2: latex fix) |
m (→Solution 1) |
||
Line 6: | Line 6: | ||
We can substitute <math>y = \sin^2{x}</math>. Since we know that <math>\cos^2{x}=1-\sin^2{x}</math>, we can do some simplification. | We can substitute <math>y = \sin^2{x}</math>. Since we know that <math>\cos^2{x}=1-\sin^2{x}</math>, we can do some simplification. | ||
− | This yields <math>y^5+(1-y)^5=\frac{11}{36}</math>. From this, we can substitute again to get some cancellation through binomials. If we let <math>z=1 | + | This yields <math>y^5+(1-y)^5=\frac{11}{36}</math>. From this, we can substitute again to get some cancellation through binomials. If we let <math>z=\frac{1}{2}-y</math>, we can simplify the equation to <math>(\frac{1}{2}+z)^5+(\frac{1}{2}-z)^5=\frac{11}{36}</math>. After using binomial theorem, this simplifies to <math>\frac{1}{16}(80z^4+40z^2+1)=\frac{11}{36}</math>. If we use the quadratic formula, we obtain the that <math>z^2=\frac{1}{12}</math>, so <math>z=\pm\frac{1}{2\sqrt{3}}</math>. By plugging z into <math>(\frac{1}{2}-z)^6+(\frac{1}{2}+z)^6</math> (which is equal to <math>\sin^{12}{x}+\cos^{12}{x}</math>, we can either use binomial theorem or sum of cubes to simplify, and we end up with <math>\frac{13}{54}</math>. Therefore, the answer is <math>\boxed{067}</math>. |
− | eric2020, inspired by Tommy2002 | + | -eric2020, inspired by Tommy2002 |
==Solution 2== | ==Solution 2== |
Revision as of 20:27, 4 June 2020
Problem 8
Let be a real number such that . Then where and are relatively prime positive integers. Find .
Solution 1
We can substitute . Since we know that , we can do some simplification.
This yields . From this, we can substitute again to get some cancellation through binomials. If we let , we can simplify the equation to . After using binomial theorem, this simplifies to . If we use the quadratic formula, we obtain the that , so . By plugging z into (which is equal to , we can either use binomial theorem or sum of cubes to simplify, and we end up with . Therefore, the answer is .
-eric2020, inspired by Tommy2002
Solution 2
First, for simplicity, let and . Note that . We then bash the rest of the problem out. Take the tenth power of this expression and get . Note that we also have . So, it suffices to compute . Let . We have from cubing that or . Next, using , we get or . Solving gives or . Clearly is extraneous, so . Now note that , and . Thus we finally get , giving .
- Emathmaster
Solution 3 (Newton Sums)
Newton sums is basically constructing the powers of the roots of the polynomials instead of deconstructing them which was done in Solution . Let and be the roots of some polynomial . Then, by Vieta, for some .
Let . We want to find . Clearly and . Newton sums tells us that where for our polynomial .
Bashing, we have
Thus . Clearly, so .
Note . Solving for , we get . Finally, .
Solution 4
Factor the first equation. First of all, because We group the first, third, and fifth term and second and fourth term. The first group: The second group: Add the two together to make Because this equals , we have Let so we get Solving the quadratic gives us Because , we finally get .
Now from the second equation, Plug in to get which yields the answer
~ZericHang
See Also
2019 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 7 |
Followed by Problem 9 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.