Difference between revisions of "2006 AIME I Problems/Problem 8"

(there are 5 not 4 rhombuses according to the original problem.)
m
Line 3: Line 3:
  
  
{{image}}
+
[[Image:2006AimeA8.PNG]]
  
  

Revision as of 19:35, 11 March 2007

Problem

Hexagon $ABCDEF$ is divided into five rhombuses, $\mathcal{P, Q, R, S,}$ and $\mathcal{T,}$ as shown. Rhombuses $\mathcal{P, Q, R,}$ and $\mathcal{S}$ are congruent, and each has area $\sqrt{2006}.$ Let $K$ be the area of rhombus $\mathcal{T}$. Given that $K$ is a positive integer, find the number of possible values for $K$.


2006AimeA8.PNG


Solution

Let $x$ denote the common side length of the rhombi. Let $y$ denote one of the smaller interior angles of rhombus $\mathcal{P}$. Then $x^2\sin(y)=\sqrt{2006}$. We also see that $\displaystyle K=x^2\sin(2y) \Longrightarrow K=2x^2\sin y \cdot \cos y \Longrightarrow K = 2\sqrt{2006}\cdot \cos y$. Thus $K$ can be any positive integer in the interval $(0, 2\sqrt{2006})$. $2\sqrt{2006} = \sqrt{8024}$ and $89^2 = 7921 < 8024 < 8100 = 90^2$, so $K$ can be any integer between 1 and 89, inclusive. Thus the number of positive values for $K$ is 089.

See also