Difference between revisions of "2020 AMC 10B Problems/Problem 24"
(→Solution) |
m (→Solution) |
||
Line 9: | Line 9: | ||
First notice that (n+1000)/70 must be an integer. This means that n is congruent to 50 (mod 70). Testing the first few values of n (adding 70 to n each time and noticing the left side increases by 1 each time) yields n=20 and n=21. At this point, the right side increases faster than the left. | First notice that (n+1000)/70 must be an integer. This means that n is congruent to 50 (mod 70). Testing the first few values of n (adding 70 to n each time and noticing the left side increases by 1 each time) yields n=20 and n=21. At this point, the right side increases faster than the left. | ||
+ | |||
However, since the left side is linear and the right side is roughly a radical, the graphs must intersect in at least one other point. Using binary search can narrow down the other cases, being n=47, n=48, n=49, and n=50. | However, since the left side is linear and the right side is roughly a radical, the graphs must intersect in at least one other point. Using binary search can narrow down the other cases, being n=47, n=48, n=49, and n=50. | ||
+ | |||
~DrJoyo | ~DrJoyo | ||
Revision as of 02:33, 8 February 2020
Problem
How many positive integers satisfy(Recall that is the greatest integer not exceeding .)
Solution
(Quick solution if you’re in a hurry)
First notice that (n+1000)/70 must be an integer. This means that n is congruent to 50 (mod 70). Testing the first few values of n (adding 70 to n each time and noticing the left side increases by 1 each time) yields n=20 and n=21. At this point, the right side increases faster than the left.
However, since the left side is linear and the right side is roughly a radical, the graphs must intersect in at least one other point. Using binary search can narrow down the other cases, being n=47, n=48, n=49, and n=50.
~DrJoyo
See Also
2020 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 23 |
Followed by Problem 25 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.