Difference between revisions of "Skew field"

m
m
Line 9: Line 9:
  
  
Every field is a skew field.
+
Every field is a skew field.  The most famous example of a skew field that is not also a field is the collection of [[quaternion]]s.
  
 
The most famous example of a skew field that is not also a field is the collection of [[quaternion]]s.
 
  
 
==See Also==
 
==See Also==
 
* [[Abstract algebra]]
 
* [[Abstract algebra]]

Revision as of 13:36, 16 November 2006

A skew field, also known as a division ring, is a field in which multiplication does not necessarily commute, or alternatively a (not necessarily commutative) ring in which every element has a two-sided inverse. That is, it is a set $S$ along with two operations, $+$ and $\cdot$ such that:

  • There are elements $1, 0 \in S$ such that $1 \cdot a = a \cdot 1 = a$ and $a + 0 = 0 + a = a$ for all $a \in S$. (Existence of additive and multiplicative identities.)
  • For each $a \in S$ other than 0, there exist elements $a^{-1}, -a \in S$ such that $a\cdot a^{-1} = a^{-1}\cdot a = 1$ and $a + (-a) = (-a) + a = 0$. (Existence of additive and multiplicative inverses.)
  • $\displaystyle a + b = b + a$ for all $a, b \in S$ (Commutativity of addition.)
  • $(a + b) + c = a + (b + c)$ for all $a, b, c \in S$ (Associativity of addition.)
  • $(a \cdot b )\cdot c = a \cdot (b \cdot c)$ (Associativity of multiplication.)
  • $a(b + c) = ab + ac$ and $(b + c)a = ba + ca$ (The distributive property.)


Every field is a skew field. The most famous example of a skew field that is not also a field is the collection of quaternions.


See Also