Difference between revisions of "2020 AMC 12B Problems/Problem 10"

(Solution 1(Coordinate Bash))
(Solution 1(Coordinate Bash))
Line 14: Line 14:
  
 
We plug this back into the linear equation to find <math>y=\frac{3}{10}</math>, and so <math>P=\left(-\frac{2}{5}, \frac{3}{10}\right)</math>. Finally, we use distance formula on <math>A</math> and <math>P</math> to get <math>AP=\sqrt{\left(-\frac{5}{10}+\frac{4}{10}\right)^2+\left(\frac{5}{10}-\frac{3}{10}\right)^2}=\sqrt{\frac{1}{100}+\frac{4}{100}}=\boxed{\mathbf{(B) } \frac{\sqrt{5}}{10}}</math>.
 
We plug this back into the linear equation to find <math>y=\frac{3}{10}</math>, and so <math>P=\left(-\frac{2}{5}, \frac{3}{10}\right)</math>. Finally, we use distance formula on <math>A</math> and <math>P</math> to get <math>AP=\sqrt{\left(-\frac{5}{10}+\frac{4}{10}\right)^2+\left(\frac{5}{10}-\frac{3}{10}\right)^2}=\sqrt{\frac{1}{100}+\frac{4}{100}}=\boxed{\mathbf{(B) } \frac{\sqrt{5}}{10}}</math>.
 +
 +
==Solution 2(Power of a Point)==
 +
 +
Let circle <math>\omega</math> intersect <math>\overline{AB}</math> at point <math>N</math>. By Power of a Point, we have <math>AN^2=AP\cdot AM</math>. We know <math>AN=\frac{1}{2}</math> because <math>N</math> is the midpoint of <math>\overline{AB}</math>, and we can easily find <math>AM</math> by the Pythagorean Theorem, which gives us <math>AM=\sqrt{1^2+\left(\frac{1}{2}\right)^2}=\frac{\sqrt{5}}{2}</math>. Our equation is now <math>\frac{1}{4}=AP\cdot \frac{\sqrt{5}}{2}</math>, or <math>AP=\frac{2}{4\sqrt{5}}=\frac{1}{2\sqrt{5}}=\frac{\sqrt{5}}{2\cdot 5}</math>, thus our answer is
 +
<math>\boxed{\textbf{(B) } \frac{\sqrt5}{10}}.</math>
  
 
==See Also==
 
==See Also==

Revision as of 20:40, 7 February 2020

Problem 10

In unit square $ABCD,$ the inscribed circle $\omega$ intersects $\overline{CD}$ at $M,$ and $\overline{AM}$ intersects $\omega$ at a point $P$ different from $M.$ What is $AP?$

$\textbf{(A) } \frac{\sqrt5}{12} \qquad \textbf{(B) } \frac{\sqrt5}{10} \qquad \textbf{(C) } \frac{\sqrt5}{9} \qquad \textbf{(D) } \frac{\sqrt5}{8} \qquad \textbf{(E) } \frac{2\sqrt5}{15}$

Solution 1(Coordinate Bash)

Place circle $\omega$ in the Cartesian plane such that the center lies on the origin. Then we can easily find the equation for $\omega$ as $x^2+y^2=\frac{1}{4}$, because it is not translated and the radius is $\frac{1}{2}$.

We have $A=\left(-\frac{1}{2}, \frac{1}{2}\right)$ and $M=\left(0, -\frac{1}{2}\right)$. The slope of the line passing through these two points is $\frac{\frac{1}{2}+\frac{1}{2}}{-\frac{1}{2}-0}=\frac{1}{-\frac{1}{2}}=-2$, and the $y$-intercept is simply $M$. This gives us the line passing through both points as $y=-2x-\frac{1}{2}$.

We substitute this into the equation for the circle to get $x^2+\left(-2x-\frac{1}{2}\right)^2=\frac{1}{4}$, or $x^2+4x^2+2x+\frac{1}{4}=\frac{1}{4}$. Simplifying gives $x(5x+2)=0$. The roots of this quadratic are $x=0$ and $x=-\frac{2}{5}$, but if $x=0$ we get point $M$, so we only want $x=-\frac{2}{5}$.

We plug this back into the linear equation to find $y=\frac{3}{10}$, and so $P=\left(-\frac{2}{5}, \frac{3}{10}\right)$. Finally, we use distance formula on $A$ and $P$ to get $AP=\sqrt{\left(-\frac{5}{10}+\frac{4}{10}\right)^2+\left(\frac{5}{10}-\frac{3}{10}\right)^2}=\sqrt{\frac{1}{100}+\frac{4}{100}}=\boxed{\mathbf{(B) } \frac{\sqrt{5}}{10}}$.

Solution 2(Power of a Point)

Let circle $\omega$ intersect $\overline{AB}$ at point $N$. By Power of a Point, we have $AN^2=AP\cdot AM$. We know $AN=\frac{1}{2}$ because $N$ is the midpoint of $\overline{AB}$, and we can easily find $AM$ by the Pythagorean Theorem, which gives us $AM=\sqrt{1^2+\left(\frac{1}{2}\right)^2}=\frac{\sqrt{5}}{2}$. Our equation is now $\frac{1}{4}=AP\cdot \frac{\sqrt{5}}{2}$, or $AP=\frac{2}{4\sqrt{5}}=\frac{1}{2\sqrt{5}}=\frac{\sqrt{5}}{2\cdot 5}$, thus our answer is $\boxed{\textbf{(B) } \frac{\sqrt5}{10}}.$

See Also

2020 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png