Difference between revisions of "2020 AMC 10B Problems/Problem 9"

m
(Solutions)
Line 6: Line 6:
 
==Solution==
 
==Solution==
 
Rearranging the terms and and completing the square for <math>y</math> yields the result <math>x^{2020}+(y-1)^2=1</math>. Then, notice that <math>x</math> can only be <math>0</math>, <math>1</math> and <math>-1</math> because any value of <math>x^{2020}</math> that is greater than 1 will cause the term <math>(y-1)^2</math> to be less than <math>0</math>, which is impossible as <math>y</math> must be real. Therefore, plugging in the above values for <math>x</math> gives the ordered pairs <math>(0,0)</math>, <math>(1,1)</math>, <math>(-1,1)</math>, and <math>(0,2)</math> gives  a  total  of <math>\boxed{\textbf{(D) }4}</math> ordered pairs.
 
Rearranging the terms and and completing the square for <math>y</math> yields the result <math>x^{2020}+(y-1)^2=1</math>. Then, notice that <math>x</math> can only be <math>0</math>, <math>1</math> and <math>-1</math> because any value of <math>x^{2020}</math> that is greater than 1 will cause the term <math>(y-1)^2</math> to be less than <math>0</math>, which is impossible as <math>y</math> must be real. Therefore, plugging in the above values for <math>x</math> gives the ordered pairs <math>(0,0)</math>, <math>(1,1)</math>, <math>(-1,1)</math>, and <math>(0,2)</math> gives  a  total  of <math>\boxed{\textbf{(D) }4}</math> ordered pairs.
 +
 +
 +
==Solution 2==
 +
 +
Bringing all of the terms to the LHS, we see a quadratic equation <cmath>y^2 - 2y + x^{2020} = 0</cmath> in terms of <math>y</math>. Applying the quadratic formula, we get <cmath>y = \frac{2\pm\sqrt{4-4\cdot1\cdot x^{2020}}}{2}=\frac{2\pm\sqrt{4(1-x^{2020})}}{2}.</cmath> In order for <math>y</math> to be real, which it must be given the stipulation that we are seeking integral answers, we know that the discriminant, <math>4(1-x^{2020})</math> must be nonnegative. Therefore, <cmath>4(1-x^{2020}) \geq 0 \implies x^{2020} \leq 1.</cmath> Here, we see that we must split the inequality into a compound, resulting in <math>-1 \leq x \leq 1</math>.
 +
 +
The only integers that satisfy this are <math>x \in \{-1,0,1\}</math>. Plugging these values back into the quadratic equation, we see that <math>x = \{-1,1\}</math> both produce a discriminant of <math>0</math>, meaning that there is only 1 solution for <math>y</math>. If <math>x = \{0\}</math>, then the discriminant is nonzero, therefore resulting in two solutions for <math>y</math>.
 +
 +
Thus, the answer is <math>2 \cdot 1 + 1 \cdot 2 = \boxed{\textbf{(D) }4}</math>.
 +
 +
~Tiblis
  
 
==Video Solution==
 
==Video Solution==

Revision as of 18:06, 10 February 2020

Problem

How many ordered pairs of integers $(x, y)$ satisfy the equation \[x^{2020}+y^2=2y?\] $\textbf{(A) } 1 \qquad\textbf{(B) } 2 \qquad\textbf{(C) } 3 \qquad\textbf{(D) } 4 \qquad\textbf{(E) } \text{infinitely many}$

Solution

Rearranging the terms and and completing the square for $y$ yields the result $x^{2020}+(y-1)^2=1$. Then, notice that $x$ can only be $0$, $1$ and $-1$ because any value of $x^{2020}$ that is greater than 1 will cause the term $(y-1)^2$ to be less than $0$, which is impossible as $y$ must be real. Therefore, plugging in the above values for $x$ gives the ordered pairs $(0,0)$, $(1,1)$, $(-1,1)$, and $(0,2)$ gives a total of $\boxed{\textbf{(D) }4}$ ordered pairs.


Solution 2

Bringing all of the terms to the LHS, we see a quadratic equation \[y^2 - 2y + x^{2020} = 0\] in terms of $y$. Applying the quadratic formula, we get \[y = \frac{2\pm\sqrt{4-4\cdot1\cdot x^{2020}}}{2}=\frac{2\pm\sqrt{4(1-x^{2020})}}{2}.\] In order for $y$ to be real, which it must be given the stipulation that we are seeking integral answers, we know that the discriminant, $4(1-x^{2020})$ must be nonnegative. Therefore, \[4(1-x^{2020}) \geq 0 \implies x^{2020} \leq 1.\] Here, we see that we must split the inequality into a compound, resulting in $-1 \leq x \leq 1$.

The only integers that satisfy this are $x \in \{-1,0,1\}$. Plugging these values back into the quadratic equation, we see that $x = \{-1,1\}$ both produce a discriminant of $0$, meaning that there is only 1 solution for $y$. If $x = \{0\}$, then the discriminant is nonzero, therefore resulting in two solutions for $y$.

Thus, the answer is $2 \cdot 1 + 1 \cdot 2 = \boxed{\textbf{(D) }4}$.

~Tiblis

Video Solution

https://youtu.be/OHR_6U686Qg

~IceMatrix

See Also

2020 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png