Difference between revisions of "2020 AMC 10B Problems/Problem 14"

(Solution)
(Solution)
Line 66: Line 66:
 
draw(arc((2,y),1,180,360));
 
draw(arc((2,y),1,180,360));
 
draw(arc((2,0),1,0,180));
 
draw(arc((2,0),1,0,180));
dot((2,0));
+
pair G,H,I,J,K;
dot((0.5,a));
+
G = (2,0);
 +
H = (2.5,a);
 +
I = (1.5,a);
 +
J = (1,0);
 +
K = (3,0);
 +
dot(G);
 +
dot(H);
 +
dot(I);
 +
dot(J);
 +
dot(K);
 
label("2",(z,c),NE);
 
label("2",(z,c),NE);
label("A",(2,0),S);
 
label("B",(0.5,a),SW);
 
label("C",(1.5,a),NE);
 
 
label("1",(1.5,0),S);
 
label("1",(1.5,0),S);
 +
label("1",(2.5,0),S);
 +
label("1",(1.25,0.5a),SE);
 +
label("1",(2.75,0.5a),SW);
 +
label("1",(2.75,0.5a),SW);
 +
label("$60^\circ$",anglemark(H,G,I),2*N);
 +
draw(anglemark(H,G,I,8),blue);
 +
draw(G--J--I--G);
 +
draw(G--H--K--G);
 
</asy>
 
</asy>
  

Revision as of 17:56, 7 February 2020

Problem

As shown in the figure below, six semicircles lie in the interior of a regular hexagon with side length 2 so that the diameters of the semicircles coincide with the sides of the hexagon. What is the area of the shaded region — inside the hexagon but outside all of the semicircles?

[asy] real x=sqrt(3); real y=2sqrt(3); real z=3.5; real a=x/2; real b=0.5; real c=3a; pair A, B, C, D, E, F; A = (1,0); B = (3,0); C = (4,x); D = (3,y); E = (1,y); F = (0,x);  fill(A--B--C--D--E--F--A--cycle,grey); fill(arc((2,0),1,0,180)--cycle,white); fill(arc((2,y),1,180,360)--cycle,white); fill(arc((z,a),1,60,240)--cycle,white); fill(arc((b,a),1,300,480)--cycle,white); fill(arc((b,c),1,240,420)--cycle,white); fill(arc((z,c),1,120,300)--cycle,white); draw(A--B--C--D--E--F--A); draw(arc((z,c),1,120,300)); draw(arc((b,c),1,240,420)); draw(arc((b,a),1,300,480)); draw(arc((z,a),1,60,240)); draw(arc((2,y),1,180,360)); draw(arc((2,0),1,0,180)); label("2",(z,c),NE); [/asy] $\textbf {(A) } 6\sqrt{3}-3\pi \qquad \textbf {(B) } \frac{9\sqrt{3}}{2} - 2\pi\ \qquad \textbf {(C) } \frac{3\sqrt{3}}{2} - \frac{\pi}{3} \qquad \textbf {(D) } 3\sqrt{3} - \pi \qquad \textbf {(E) } \frac{9\sqrt{3}}{2} - \pi$

Solution

[asy] real x=sqrt(3); real y=2sqrt(3); real z=3.5; real a=x/2; real b=0.5; real c=3a; pair A, B, C, D, E, F; A = (1,0); B = (3,0); C = (4,x); D = (3,y); E = (1,y); F = (0,x);  fill(A--B--C--D--E--F--A--cycle,grey); fill(arc((2,0),1,0,180)--cycle,white); fill(arc((2,y),1,180,360)--cycle,white); fill(arc((z,a),1,60,240)--cycle,white); fill(arc((b,a),1,300,480)--cycle,white); fill(arc((b,c),1,240,420)--cycle,white); fill(arc((z,c),1,120,300)--cycle,white); draw(A--B--C--D--E--F--A); draw(arc((z,c),1,120,300)); draw(arc((b,c),1,240,420)); draw(arc((b,a),1,300,480)); draw(arc((z,a),1,60,240)); draw(arc((2,y),1,180,360)); draw(arc((2,0),1,0,180)); pair G,H,I,J,K; G = (2,0); H = (2.5,a); I = (1.5,a); J = (1,0); K = (3,0); dot(G); dot(H); dot(I); dot(J); dot(K); label("2",(z,c),NE); label("1",(1.5,0),S); label("1",(2.5,0),S); label("1",(1.25,0.5a),SE); label("1",(2.75,0.5a),SW); label("1",(2.75,0.5a),SW); label("$60^\circ$",anglemark(H,G,I),2*N); draw(anglemark(H,G,I,8),blue); draw(G--J--I--G); draw(G--H--K--G); [/asy]

Video Solution

https://youtu.be/t6yjfKXpwDs

~IceMatrix

See Also

2020 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png