Difference between revisions of "2020 AMC 10B Problems/Problem 2"

(Created page with "==Problem== What is the value of <cmath>1-(-2)-3-(-4)-5-(-6)?</cmath> <math>\textbf{(A)}\ -20 \qquad\textbf{(B)}\ -3 \qquad\textbf{(C)}\ 3 \qquad\textbf{(D)}\ 5 \qquad\tex...")
 
m (Solution)
Line 7: Line 7:
  
 
==Solution==
 
==Solution==
A cube with side length <math>1</math> has volume <math>1^3=1</math>. <math>5</math> of these will have a total volume of <math>5\cdot1=5</math>.
+
A cube with side length <math>1</math> has volume <math>1^3=1</math>, so <math>5</math> of these will have a total volume of <math>5\cdot1=5</math>.
  
A cube with side length <math>2</math> has volume <math>2^3=8</math>. <math>5</math> of these will have a total volume of <math>5\cdot8=40</math>.
+
A cube with side length <math>2</math> has volume <math>2^3=8</math>, so <math>5</math> of these will have a total volume of <math>5\cdot8=40</math>.
  
 
<math>5+40=\boxed{\textbf{(E) }21}</math> ~quacker88
 
<math>5+40=\boxed{\textbf{(E) }21}</math> ~quacker88

Revision as of 15:33, 7 February 2020

Problem

What is the value of \[1-(-2)-3-(-4)-5-(-6)?\]

$\textbf{(A)}\ -20 \qquad\textbf{(B)}\ -3 \qquad\textbf{(C)}\  3 \qquad\textbf{(D)}\ 5 \qquad\textbf{(E)}\ 21$

Solution

A cube with side length $1$ has volume $1^3=1$, so $5$ of these will have a total volume of $5\cdot1=5$.

A cube with side length $2$ has volume $2^3=8$, so $5$ of these will have a total volume of $5\cdot8=40$.

$5+40=\boxed{\textbf{(E) }21}$ ~quacker88