Difference between revisions of "2018 AIME II Problems/Problem 9"

m (Solution 2 (Homothety))
Line 1: Line 1:
 
==Problem==
 
==Problem==
 
 
Octagon <math>ABCDEFGH</math> with side lengths <math>AB = CD = EF = GH = 10</math> and <math>BC = DE = FG = HA = 11</math> is formed by removing 6-8-10 triangles from the corners of a <math>23</math> <math>\times</math> <math>27</math> rectangle with side <math>\overline{AH}</math> on a short side of the rectangle, as shown. Let <math>J</math> be the midpoint of <math>\overline{AH}</math>, and partition the octagon into 7 triangles by drawing segments <math>\overline{JB}</math>, <math>\overline{JC}</math>, <math>\overline{JD}</math>, <math>\overline{JE}</math>, <math>\overline{JF}</math>, and <math>\overline{JG}</math>. Find the area of the convex polygon whose vertices are the centroids of these 7 triangles.
 
Octagon <math>ABCDEFGH</math> with side lengths <math>AB = CD = EF = GH = 10</math> and <math>BC = DE = FG = HA = 11</math> is formed by removing 6-8-10 triangles from the corners of a <math>23</math> <math>\times</math> <math>27</math> rectangle with side <math>\overline{AH}</math> on a short side of the rectangle, as shown. Let <math>J</math> be the midpoint of <math>\overline{AH}</math>, and partition the octagon into 7 triangles by drawing segments <math>\overline{JB}</math>, <math>\overline{JC}</math>, <math>\overline{JD}</math>, <math>\overline{JE}</math>, <math>\overline{JF}</math>, and <math>\overline{JG}</math>. Find the area of the convex polygon whose vertices are the centroids of these 7 triangles.
 
<asy>
 
unitsize(6);
 
pair P = (0, 0), Q = (0, 23), R = (27, 23), SS = (27, 0);
 
pair A = (0, 6), B = (8, 0), C = (19, 0), D = (27, 6), EE = (27, 17), F = (19, 23), G = (8, 23), J = (0, 23/2), H = (0, 17);
 
draw(P--Q--R--SS--cycle);
 
draw(J--B);
 
draw(J--C);
 
draw(J--D);
 
draw(J--EE);
 
draw(J--F);
 
draw(J--G);
 
draw(A--B);
 
draw(H--G);
 
real dark = 0.6;
 
filldraw(A--B--P--cycle, gray(dark));
 
filldraw(H--G--Q--cycle, gray(dark));
 
filldraw(F--EE--R--cycle, gray(dark));
 
filldraw(D--C--SS--cycle, gray(dark));
 
dot(A);
 
dot(B);
 
dot(C);
 
dot(D);
 
dot(EE);
 
dot(F);
 
dot(G);
 
dot(H);
 
dot(J);
 
dot(H);
 
defaultpen(fontsize(10pt));
 
real r = 1.3;
 
label("$A$", A, W*r);
 
label("$B$", B, S*r);
 
label("$C$", C, S*r);
 
label("$D$", D, E*r);
 
label("$E$", EE, E*r);
 
label("$F$", F, N*r);
 
label("$G$", G, N*r);
 
label("$H$", H, W*r);
 
label("$J$", J, W*r);
 
</asy>
 
  
 
==Solution 1 (Massive Shoelace)==
 
==Solution 1 (Massive Shoelace)==

Revision as of 11:21, 12 August 2020

Problem

Octagon $ABCDEFGH$ with side lengths $AB = CD = EF = GH = 10$ and $BC = DE = FG = HA = 11$ is formed by removing 6-8-10 triangles from the corners of a $23$ $\times$ $27$ rectangle with side $\overline{AH}$ on a short side of the rectangle, as shown. Let $J$ be the midpoint of $\overline{AH}$, and partition the octagon into 7 triangles by drawing segments $\overline{JB}$, $\overline{JC}$, $\overline{JD}$, $\overline{JE}$, $\overline{JF}$, and $\overline{JG}$. Find the area of the convex polygon whose vertices are the centroids of these 7 triangles.

Solution 1 (Massive Shoelace)

We represent octagon $ABCDEFGH$ in the coordinate plane with the upper left corner of the rectangle being the origin. Then it follows that $A=(0,-6), B=(8, 0), C=(19,0), D=(27, -6), E=(27, -17), F=(19, -23), G=(8, -23), H=(0, -17), J=(0, -\frac{23}{2})$. Recall that the centroid is $\frac{1}{3}$ way up each median in the triangle. Thus, we can find the centroids easily by finding the midpoint of the side opposite of point $J$. Furthermore, we can take advantage of the reflective symmetry across the line parallel to $BC$ going through $J$ by dealing with less coordinates and ommiting the $\frac{1}{2}$ in the shoelace formula.

By doing some basic algebra, we find that the coordinates of the centroids of $\bigtriangleup JAB, \bigtriangleup JBC, \bigtriangleup JCD, \bigtriangleup JDE$ are $\left(\frac{8}{3}, -\frac{35}{6}\right), \left(9, -\frac{23}{6}\right), \left(\frac{46}{3}, -\frac{35}{6}\right),$ and $\left(18, -\frac{23}{2}\right)$, respectively. We'll have to throw in the projection of the centroid of $\bigtriangleup JAB$ to the line of reflection to apply shoelace, and that point is $\left( \frac{8}{3}, -\frac{23}{2}\right)$

Finally, applying Shoelace, we get: $\left|\left(\frac{8}{3}\cdot (-\frac{23}{6})+9\cdot (-\frac{35}{6})+\frac{46}{3}\cdot (-\frac{23}{2})+18\cdot (\frac{-23}{2})+\frac{8}{3}\cdot (-\frac{35}{6})\right) - \left((-\frac{35}{6}\cdot 9) +\\(-\frac{23}{6}\cdot \frac{46}{3})+ (-\frac{35}{6}\cdot 18)+(\frac{-23}{2}\cdot \frac{8}{3})+(-\frac{23}{2}\cdot \frac{8}{3})\right)\right|$ $=\left|\left(-\frac{92}{9}-\frac{105}{2}-\frac{529}{3}-207-\frac{140}{9}\right)-\left(-\frac{105}{2}-\frac{529}{9}-105-\frac{92}{3}-\frac{92}{3}\right)\right|$ $=\left|-\frac{232}{9}-\frac{1373}{6}-207+\frac{529}{9}+\frac{184}{3}+105+\frac{105}{2}\right|$ $=\left|\frac{297}{9}-\frac{690}{6}-102\right|=\left| 33-115-102\right|=\left|-184\right|=\boxed{184}$

Solution by ktong

Solution 2 (Homothety)

Draw the heptagon whose vertices are the midpoints of octagon $ABCDEFGH$ except $J$. We have a homothety since:

1. $J$ passes through corresponding vertices of the two heptagons.

2.By centroid properties, our ratio between the sidelengths is $\frac{2}{3}$, and their area ratio is hence $\frac{4}{9}$.

Compute the area of the large heptagon by dividing into two congruent trapezoids and a triangle. The area of each trapezoid is \[= \frac{1}{2}(17+23)\cdot \frac{19}{2}=190\]. The area of each triangle is \[=  \frac{1}{2}\cdot 17\cdot 4=34\].

Hence, the area of the large heptagon is \[2\cdot 190+34=414\]. Then, from our homothety, the area of the required heptagon is \[\frac{4}{9}\cdot 414=\boxed{184}\] ~novus677

2018 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png