Difference between revisions of "2020 AMC 12A Problems/Problem 9"

m
(Removed a wrong solution - it makes the unjustified assumption that all 5 roots of the degree-5 polynomial will be valid values of cos x (i.e. will be between -1 and 1).)
Line 14: Line 14:
  
 
Drawing such a graph would get <math>\boxed{\textbf{E) }5}</math> ~lopkiloinm
 
Drawing such a graph would get <math>\boxed{\textbf{E) }5}</math> ~lopkiloinm
 
==Solution (Algebraically)==
 
 
<math>\tan(2x)=\frac{\sin(2x)}{\cos(2x)}</math>. Applying double angle identities for both, we have
 
 
<cmath>\tan(2x)=\frac{\sin(2x)}{\cos(2x)}=\frac{2\sin x \cos x}{2\cos^{2}x-1}</cmath>
 
 
Applying half angle identities on the RHS, we have <math>\cos\frac{x}{2}=\pm\sqrt{\frac{\cos x +1}{2}}</math>.
 
 
Setting both sides equal and squaring,
 
 
<cmath>\frac{2\sin x \cos x}{2\cos^{2}x-1}=\pm\sqrt{\frac{\cos x + 1}{2}}</cmath>
 
 
<cmath>\frac{4\sin^2 x \cos^2 x}{4\cos^{4}x-4\cos^2 x+1}=\frac{\cos x + 1}{2}</cmath>
 
 
Since <math>\sin^2 x + \cos^2 x = 1</math>, we can substitute <math>\sin^2 x = 1-\cos^2 x</math> to convert the whole equation into cosine.
 
 
<cmath>\frac{4(1-\cos^2 x) (\cos^2 x)}{4\cos^{4}x-4\cos^2 x+1}=\frac{\cos x + 1}{2}</cmath>
 
 
Cross multiplying, we get
 
 
<cmath>8(1-\cos^2 x) (\cos^2 x)=(4\cos^{4}x-4\cos^2 x+1)(1+\cos x)</cmath>
 
 
<cmath>0=(4\cos^{4}x-4\cos^2 x+1)(1+\cos x)-8(1-\cos^2 x) (\cos^2 x)</cmath>
 
 
Without expanding anything, we can see that the first two polynomials will expand into a polynomial with degree <math>5</math> and the <math>8(1-\cos^2 x) (\cos^2 x)</math> term will expand into a polynomial with degree <math>4</math>. This means that overall, the polynomial will have degree <math>5</math>. From this, we can see that there are <math>\boxed{\textbf{E) }5}</math> solutions. ~quacker88
 
  
 
==Video Solution==
 
==Video Solution==

Revision as of 02:30, 8 February 2020

Problem

How many solutions does the equation $\tan(2x)=\cos(\tfrac{x}{2})$ have on the interval $[0,2\pi]?$

$\textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 4\qquad\textbf{(E)}\ 5$

Solution

Draw a graph of tan$(2x)$ and cos$(\frac{x}{2})$

tan$(2x)$ has a period of $\frac{\pi}{2},$ asymptotes at $x = \frac{\pi}{4}+\frac{k\pi}{2},$ and zeroes at $\frac{k\pi}{2}$. It is positive from $(0,\frac{\pi}{4}) \cup (\frac{\pi}{2},\frac{3\pi}{4}) \cup (\pi,\frac{5\pi}{4}) \cup (\frac{7\pi}{4},2\pi)$ and negative elsewhere.

cos$(\frac{x}{2})$ has a period of $4\pi$ and zeroes at $\pi$. It is positive from $[0,\pi)$ and negative elsewhere.

Drawing such a graph would get $\boxed{\textbf{E) }5}$ ~lopkiloinm

Video Solution

https://youtu.be/fzZzGqNqW6U

~IceMatrix

See Also

2020 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png