Difference between revisions of "Specimen Cyprus Seniors Provincial/2nd grade/Problems"
(problems) |
m (correction) |
||
Line 6: | Line 6: | ||
b)Area<math>(\Beta\Gamma\Delta)</math>=Area<math>(\Beta '\Gamma '\Delta ')</math>. | b)Area<math>(\Beta\Gamma\Delta)</math>=Area<math>(\Beta '\Gamma '\Delta ')</math>. | ||
− | [[ | + | [[Specimen Cyprus Seniors Provincial/2nd grade/Problem 1|Solution]] |
== Problem 2 == | == Problem 2 == | ||
Line 12: | Line 12: | ||
If <math>\alpha=sinx_{1}</math>,<math>\beta=cosx_{1}</math><math>sinx_{2}</math>, <math>\gamma=cosx_{1}cosx_{2} sinx_{3}</math> and <math>\delta=cosx_{1}cosx_{2}cosx_{3}</math> prove that <math>\alpha^2+\beta^2+\gamma^2+\delta^2=1</math> | If <math>\alpha=sinx_{1}</math>,<math>\beta=cosx_{1}</math><math>sinx_{2}</math>, <math>\gamma=cosx_{1}cosx_{2} sinx_{3}</math> and <math>\delta=cosx_{1}cosx_{2}cosx_{3}</math> prove that <math>\alpha^2+\beta^2+\gamma^2+\delta^2=1</math> | ||
− | [[ | + | [[Specimen Cyprus Seniors Provincial/2nd grade/Problem 2|Solution]] |
== Problem 3 == | == Problem 3 == | ||
Prove that if <math>\kappa, \lambda, \nu</math> are positive integers, then the equation <math>x^2-(\nu +2)\kappa\lambda x+\kappa^2\lambda^2 = 0</math> has irratioanl roots. | Prove that if <math>\kappa, \lambda, \nu</math> are positive integers, then the equation <math>x^2-(\nu +2)\kappa\lambda x+\kappa^2\lambda^2 = 0</math> has irratioanl roots. | ||
− | [[ | + | [[Specimen Cyprus Seniors Provincial/2nd grade/Problem 3|Solution]] |
== Problem 4 == | == Problem 4 == | ||
Line 26: | Line 26: | ||
b) Calculate the value of: <math>\rho_{1}^{2006} + \rho_{2}^{2006}</math>. | b) Calculate the value of: <math>\rho_{1}^{2006} + \rho_{2}^{2006}</math>. | ||
− | [[ | + | [[Specimen Cyprus Seniors Provincial/2nd grade/Problem 4|Solution]] |
== See also == | == See also == |
Revision as of 06:55, 12 November 2006
Problem 1
Let $\Alpha\Beta\Gamma\Delta$ (Error compiling LaTeX. Unknown error_msg) be a parallelogram. Let be a straight line passing through $\Alpha$ (Error compiling LaTeX. Unknown error_msg) without cutting $\Alpha\Beta\Gamma\Delta$ (Error compiling LaTeX. Unknown error_msg). If $\Beta ', \Gamma ', \Delta '$ (Error compiling LaTeX. Unknown error_msg) are the projections of $\Beta, \Gamma, \Delta$ (Error compiling LaTeX. Unknown error_msg) on respectively, show that
a) the distance of from is equal to the sum of the distances $\Beta, \Delta$ (Error compiling LaTeX. Unknown error_msg) from .
b)Area$(\Beta\Gamma\Delta)$ (Error compiling LaTeX. Unknown error_msg)=Area$(\Beta '\Gamma '\Delta ')$ (Error compiling LaTeX. Unknown error_msg).
Problem 2
Problem
If ,, and prove that
Problem 3
Prove that if are positive integers, then the equation has irratioanl roots.
Problem 4
If are the roots of equation then:
a) Prove that and
b) Calculate the value of: .