Difference between revisions of "2020 AMC 10A Problems/Problem 12"

(Solution 5 (Bashy))
Line 119: Line 119:
 
</asy>
 
</asy>
  
It is well known that medians divide each other into segments of <math>2:1</math> ratio. From this, we have <math>PC=MP=8</math> and <math>UP=UV=4</math>. From right triangle <math>\triangle{MPC}</math>, <math>MC^2=MP^2+MC^2=8^2+8^2=128</math>, which implies <math>MC=\sqrt{128}=8\sqrt{2}</math>. Then the area of <math>\triangle{AMC}</math> is <math>\dfrac{8\sqrt{2} \cdot AB}{2}</math>, so our goal is to find <math>AB</math>.
+
Let <math>AB</math> be the height. It passes through <math>P</math> because <math>\triangle{AMC}</math> is isosceles. It is well known that medians divide each other into segments of <math>2:1</math> ratio. From this, we have <math>PC=MP=8</math> and <math>UP=UV=4</math>. From right triangle <math>\triangle{MUP}</math>, <math>MU^2=MP^2+UP^2=8^2+4^2=80</math>, so <math>MU=4\sqrt{5}</math>. Since <math>CU</math> is a median, <math>AM=8\sqrt{5}</math>. From right triangle <math>\triangle{MPC}</math>, <math>MC^2=MP^2+MC^2=8^2+8^2=128</math>, which implies <math>MC=\sqrt{128}=8\sqrt{2}</math>. By symmetry <math>MB=\dfrac{8\sqrt{2}{2}=4\sqrt{2}</math>.  
  
 
+
Applying the Pythagorean Theorem to triangle <math>\triangle{MAB}</math> gives <math>AB^2=AM^2-MB^2=8\sqrt{5}^2-4\sqrt{2}^2=256, so </math>AB=\sqrt{288}=12\sqrt{2}<math>. Then the area of </math>\triangle{AMC}$ is <cmath>\dfrac{AB \cdot MC}{2}=\dfrac{8\sqrt{2} \cdot 12\sqrt{2}}{2}=\dfrac{96 \cdot 2}{2}=\boxed{\textbf{(C) }96}</cmath>
Note that <math>AB=AP+BP</math>. Since <math>\triangle{AMC}</math> is isosceles, by symmetry <math>MB=MC</math>, because <math>AB</math> is the altitude. Knowing this, <math>BP</math> is the median to hypotenuse <math>MC</math> of triangle <math>\triangle{MPC}</math>, which means <math>2BP=MC</math>. Since <math>MC=8\sqrt{2}</math>, <math>BP=4\sqrt{2}</math>.
 
 
 
 
 
Now we find <math>AP</math>. Note <math>AP=AK+KP</math>. (K is the intersection of the diagonals of quadrilateral <math>AUPV</math>). From right triangle <math>\triangle{AVP}</math>, we have <math>UV=4\sqrt{2}</math> by the Pythagorean Theorem. By symmetry, <math>PK</math> is the median to hypotenuse <math>UV</math>, which means <math>2PK=UV</math>. This trivially means <math>PK=2\sqrt{2}</math>.
 
 
 
 
 
Notice quadrilateral <math>AUPV</math> is a kite, which means <math>\triangle{AKU}</math> is right(the diagonals are perpendicular). By the Pythagorean Theorem, <math>AK^2=AU^2-UK^2</math>. Since <math>CU</math> is a median, <math>AU=UM</math>. From right triangle <math>\triangle{UPM}</math>, <math>UM^2=UP^2+MP^2=4^2+8^2=80</math>, which means <math>UM=4\sqrt{5}</math>, and thus <math>AU=4\sqrt{5}</math>.
 
 
 
 
 
From our previous equation <math>AK^2=AU^2-UK^2</math>, we thus have <cmath>AK^2=80-UK^2=80-\left(\dfrac{UV}{2}\right)=80-8=72,</cmath> so <math>AK=6\sqrt{2}</math>. We also know <math>PK=2\sqrt{2}</math>, so <math>AP=AK+PK=8\sqrt{2}</math>.  
 
 
 
 
 
Recall that <math>AB=AP+BP=8\sqrt{2}+4\sqrt{2}=12\sqrt{2}</math>. By the area formula, <cmath>[ABC]=\dfrac{AB \cdot MC}{2}=\dfrac{8\sqrt{2} \cdot 12\sqrt{2}}{2}=\dfrac{96 \cdot 2}{2}=\boxed{\textbf{(C) }96}.</cmath>
 
  
 
==Solution 6 (Drawing)==
 
==Solution 6 (Drawing)==

Revision as of 11:19, 2 February 2020

Problem

Triangle $AMC$ is isoceles with $AM = AC$. Medians $\overline{MV}$ and $\overline{CU}$ are perpendicular to each other, and $MV=CU=12$. What is the area of $\triangle AMC?$

[asy] draw((-4,0)--(4,0)--(0,12)--cycle); draw((-2,6)--(4,0)); draw((2,6)--(-4,0)); label("M", (-4,0), W); label("C", (4,0), E); label("A", (0, 12), N); label("V", (2, 6), NE); label("U", (-2, 6), NW); label("P", (0, 3.6), S); [/asy]

$\textbf{(A) } 48 \qquad \textbf{(B) } 72 \qquad \textbf{(C) } 96 \qquad \textbf{(D) } 144 \qquad \textbf{(E) } 192$

Solution 1

Since quadrilateral $UVCM$ has perpendicular diagonals, its area can be found as half of the product of the length of the diagonals. Also note that $\triangle AUV$ has $\frac 14$ the area of triangle $AMC$ by similarity, so $[UVCM]=\frac 34\cdot [AMC].$ Thus, \[\frac 12 \cdot 12\cdot 12=\frac 34 \cdot [AMC]\] \[72=\frac 34\cdot [AMC]\] \[[AMC]=96\rightarrow \boxed{\textbf{(C)}}.\]

Solution 2 (Trapezoid)

[asy] draw((-4,0)--(4,0)--(0,12)--cycle); draw((-2,6)--(4,0)); draw((2,6)--(-4,0)); draw((-2,6)--(2,6)); label("M", (-4,0), W); label("C", (4,0), E); label("A", (0, 12), N); label("V", (2, 6), NE); label("U", (-2, 6), NW); label("P", (0, 3.6), S); [/asy]

We know that $\triangle AUV \sim \triangle AMC$, and since the ratios of its sides are $\frac{1}{2}$, the ratio of of their areas is $(\frac{1}{2})^2=\frac{1}{4}$.

If $\triangle AUV$ is $\frac{1}{4}$ the area of $\triangle AMC$, then trapezoid $MUVC$ is $\frac{3}{4}$ the area of $\triangle AMC$.

Let's call the intersection of $\overline{UC}$ and $\overline{MV}$ $P$. Let $\overline{UP}=x$. Then $\overline{PC}=12-x$. Since $\overline{UC}  \perp \overline{MV}$, $\overline{UP}$ and $\overline{CP}$ are heights of triangles $\triangle MUV$ and $\triangle MCV$, respectively. Both of these triangles have base $12$.

Area of $\triangle MUV = \frac{x\cdot12}{2}=6x$

Area of $\triangle MCV = \frac{(12-x)\cdot12}{2}=72-6x$

Adding these two gives us the area of trapezoid $MUVC$, which is $6x+(72-6x)=72$.

This is $\frac{3}{4}$ of the triangle, so the area of the triangle is $\frac{4}{3}\cdot{72}=\boxed{\textbf{(C) } 96}$ ~quacker88, diagram by programjames1

Solution 3 (Medians)

Draw median $\overline{AB}$. [asy] draw((-4,0)--(4,0)--(0,12)--cycle); draw((-2,6)--(4,0)); draw((2,6)--(-4,0)); draw((0,12)--(0,0)); label("M", (-4,0), W); label("C", (4,0), E); label("A", (0, 12), N); label("V", (2, 6), NE); label("U", (-2, 6), NW); label("P", (0.5, 4), E); label("B", (0, 0), S); [/asy]

Since we know that all medians of a triangle intersect at the incenter, we know that $\overline{AB}$ passes through point $P$. We also know that medians of a triangle divide each other into segments of ratio $2:1$. Knowing this, we can see that $\overline{PC}:\overline{UP}=2:1$, and since the two segments sum to $12$, $\overline{PC}$ and $\overline{UP}$ are $8$ and $4$, respectively.

Finally knowing that the medians divide the triangle into $6$ sections of equal area, finding the area of $\triangle PUM$ is enough. $\overline{PC} = \overline{MP} = 8$.

The area of $\triangle PUM = \frac{4\cdot8}{2}=16$. Multiplying this by $6$ gives us $6\cdot16=\boxed{\textbf{(C) }96}$

~quacker88

Solution 4 (Triangles)

[asy] draw((-4,0)--(4,0)--(0,12)--cycle); draw((-2,6)--(4,0)); draw((2,6)--(-4,0)); draw((-2,6)--(2,6)); label("M", (-4,0), W); label("C", (4,0), E); label("A", (0, 12), N); label("V", (2, 6), NE); label("U", (-2, 6), NW); label("P", (0, 3.6), S); [/asy] We know that $AU = UM$, $AV = VC$, so $UV = \frac{1}{2} MC$.

As $\angle UPM = \angle VPC = 90$, we can see that $\triangle UPM \cong \triangle VPC$ and $\triangle UVP \sim \triangle MPC$ with a side ratio of $1 : 2$.

So $UP = VP = 4$, $MP = PC = 8$.

With that, we can see that $S\triangle UPM = 16$, and the area of trapezoid $MUVC$ is 72.

As said in solution 1, $S\triangle AMC = 72  /  \frac{3}{4} = \boxed{\textbf{(C) } 96}$.

-QuadraticFunctions, solution 1 by ???

Solution 5 (Bashy)

[asy] draw((-4,0)--(4,0)--(0,12)--cycle); draw((-2,6)--(4,0)); draw((2,6)--(-4,0)); draw((0,12)--(0,0)); draw((-2,6)--(2,6)); label("K", (0, 6), NE); label("M", (-4,0), W); label("C", (4,0), E); label("A", (0, 12), N); label("V", (2, 6), NE); label("U", (-2, 6), NW); label("P", (0.5, 4), E); label("B", (0, 0), S);  [/asy]

Let $AB$ be the height. It passes through $P$ because $\triangle{AMC}$ is isosceles. It is well known that medians divide each other into segments of $2:1$ ratio. From this, we have $PC=MP=8$ and $UP=UV=4$. From right triangle $\triangle{MUP}$, $MU^2=MP^2+UP^2=8^2+4^2=80$, so $MU=4\sqrt{5}$. Since $CU$ is a median, $AM=8\sqrt{5}$. From right triangle $\triangle{MPC}$, $MC^2=MP^2+MC^2=8^2+8^2=128$, which implies $MC=\sqrt{128}=8\sqrt{2}$. By symmetry $MB=\dfrac{8\sqrt{2}{2}=4\sqrt{2}$ (Error compiling LaTeX. Unknown error_msg).

Applying the Pythagorean Theorem to triangle $\triangle{MAB}$ gives $AB^2=AM^2-MB^2=8\sqrt{5}^2-4\sqrt{2}^2=256, so$AB=\sqrt{288}=12\sqrt{2}$. Then the area of$\triangle{AMC}$ is \[\dfrac{AB \cdot MC}{2}=\dfrac{8\sqrt{2} \cdot 12\sqrt{2}}{2}=\dfrac{96 \cdot 2}{2}=\boxed{\textbf{(C) }96}\]

Solution 6 (Drawing)

(NOT recommended) Transfer the given diagram, which happens to be to scale, onto a piece of a graph paper. Counting the boxes should give a reliable result since the answer choices are relatively far apart. -Lingjun

Solution 7

Given a triangle with perpendicular medians with lengths $x$ and $y$, the area will be $\frac{2xy}{3}=\boxed{\textbf{(C) }96}$.

Video Solution

https://youtu.be/ZGwAasE32Y4

~IceMatrix

See Also

2020 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png