Difference between revisions of "2006 Cyprus Seniors Provincial/2nd grade/Problems"
m (spaces) |
5849206328x (talk | contribs) m |
||
Line 9: | Line 9: | ||
== Problem 2 == | == Problem 2 == | ||
− | Let <math>\ | + | Let <math>\text{A}, \text{B}, \Gamma</math> be consecutive points on a straight line <math>(\epsilon)</math>. We construct equilateral triangles <math>\text{AB}\Delta</math> and <math>\text{B}\Gamma\text{E}</math> to the same side of <math>(\epsilon)</math>. |
− | a) Prove that <math>\angle\ | + | a) Prove that <math>\angle \text{AEB} = \angle\Delta\Gamma\text{B}</math> |
b) If <math>x_{1}</math> is the distance of <math>A</math> form <math>\Gamma\Delta</math> and <math>x_{2}</math> is the distance of <math>\Gamma</math> form <math>\Alpha\Gamma</math> prove that | b) If <math>x_{1}</math> is the distance of <math>A</math> form <math>\Gamma\Delta</math> and <math>x_{2}</math> is the distance of <math>\Gamma</math> form <math>\Alpha\Gamma</math> prove that | ||
Line 20: | Line 20: | ||
== Problem 3 == | == Problem 3 == | ||
− | If <math>\ | + | If <math>\text{A}=\frac{1-\cos \theta}{\sin \theta}</math> and <math>\Beta=\frac{1-sin\theta}{cos\theta}</math>, prove that |
<math>\frac{\Alpha^2}{(1+\Alpha^2)^2} + \frac{\Beta^2}{(1+\Beta^2)^2} = \frac{1}{4}</math>. | <math>\frac{\Alpha^2}{(1+\Alpha^2)^2} + \frac{\Beta^2}{(1+\Beta^2)^2} = \frac{1}{4}</math>. | ||
Revision as of 21:48, 27 September 2009
Problem 1
If with , prove that
i)
ii) .
Problem 2
Let be consecutive points on a straight line . We construct equilateral triangles and to the same side of .
a) Prove that
b) If is the distance of form and is the distance of form $\Alpha\Gamma$ (Error compiling LaTeX. Unknown error_msg) prove that
$\frac{x_{1}}{x_{2}} = \frac{Area(\Alpha\Gamma\Delta)}{Area(\Alpha\Gamma\Epsilon)} = \frac{\Alpha\Beta}{\Beta\Gamma}$ (Error compiling LaTeX. Unknown error_msg).
Problem 3
If and $\Beta=\frac{1-sin\theta}{cos\theta}$ (Error compiling LaTeX. Unknown error_msg), prove that $\frac{\Alpha^2}{(1+\Alpha^2)^2} + \frac{\Beta^2}{(1+\Beta^2)^2} = \frac{1}{4}$ (Error compiling LaTeX. Unknown error_msg).
Problem 4
Find all integers pairs (x,y) that verify at the same time the inequalities and .