Difference between revisions of "2020 AMC 12A Problems/Problem 9"

(Created page with "==Problem 9== How many solutions does the equation tan<math>(2x)=cos(\frac{x}{2})</math> have on the interval <math>[0,2pi]?</math> <math> \textbf{(A)}\ 1\qquad\textbf{(B)}\...")
 
(Problem 9)
Line 1: Line 1:
 
==Problem 9==
 
==Problem 9==
  
How many solutions does the equation tan<math>(2x)=cos(\frac{x}{2})</math> have on the interval <math>[0,2pi]?</math>
+
How many solutions does the equation tan<math>(2x)=cos(\frac{x}{2})</math> have on the interval <math>[0,2\pi]?</math>
  
 
<math> \textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 4\qquad\textbf{(E)}\ 5 </math>
 
<math> \textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 4\qquad\textbf{(E)}\ 5 </math>

Revision as of 13:07, 1 February 2020

Problem 9

How many solutions does the equation tan$(2x)=cos(\frac{x}{2})$ have on the interval $[0,2\pi]?$

$\textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 4\qquad\textbf{(E)}\ 5$