Difference between revisions of "2020 AMC 12A Problems/Problem 1"

(Solution)
(Solution)
Line 5: Line 5:
 
<math>\textbf{(A)}\ 10\%\qquad\textbf{(B)}\ 15\%\qquad\textbf{(C)}\ 20\%\qquad\textbf{(D)}\ 30\%\qquad\textbf{(E)}\ 35\%</math>
 
<math>\textbf{(A)}\ 10\%\qquad\textbf{(B)}\ 15\%\qquad\textbf{(C)}\ 20\%\qquad\textbf{(D)}\ 30\%\qquad\textbf{(E)}\ 35\%</math>
  
==Solution==
+
==Solution 1==
  
 
If Carlos took 70% of the pie, (100 - 70) = 30% must be remaining. After Maria takes 1/3 of the remaining 30%,  
 
If Carlos took 70% of the pie, (100 - 70) = 30% must be remaining. After Maria takes 1/3 of the remaining 30%,  
Line 12: Line 12:
 
Therefore:
 
Therefore:
  
(3 / 10) * (2 / 3) = (2 / 10) = 20%, which is answer choice  
+
(3 / 10) * (2 / 3) = (2 / 10) = 20%, which is answer choice C
  
 
If anyone could add the latex to the numbers / expressions that would be really helpful!
 
If anyone could add the latex to the numbers / expressions that would be really helpful!

Revision as of 09:34, 1 February 2020

Problem

Carlos took $70\%$ of a whole pie. Maria took one third of the remainder. What portion of the whole pie was left?

$\textbf{(A)}\ 10\%\qquad\textbf{(B)}\ 15\%\qquad\textbf{(C)}\ 20\%\qquad\textbf{(D)}\ 30\%\qquad\textbf{(E)}\ 35\%$

Solution 1

If Carlos took 70% of the pie, (100 - 70) = 30% must be remaining. After Maria takes 1/3 of the remaining 30%, (1 - 1/3) = 2/3 is left.

Therefore:

(3 / 10) * (2 / 3) = (2 / 10) = 20%, which is answer choice C

If anyone could add the latex to the numbers / expressions that would be really helpful!

-Contributed by Awesome2.1

See Also

2020 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png