Difference between revisions of "2020 AMC 10A Problems/Problem 15"

(Problem 15)
(See Also)
Line 4: Line 4:
  
 
<math>\textbf{(A)}\ 3\qquad\textbf{(B)}\ 5\qquad\textbf{(C)}\ 12\qquad\textbf{(D)}\ 18\qquad\textbf{(E)}\ 23</math>
 
<math>\textbf{(A)}\ 3\qquad\textbf{(B)}\ 5\qquad\textbf{(C)}\ 12\qquad\textbf{(D)}\ 18\qquad\textbf{(E)}\ 23</math>
 +
 +
==Solution==
 +
The prime factorization of 12! is <math>2^{10}</math> * <math>3^5</math> * <math>5^2</math> * <math>7</math> * <math>11</math>.
 +
This yields a total of <math>11</math> * <math>6</math> * <math>3</math> * <math>2</math> * <math>2</math> divisors of 12!.
 +
In order to produce a perfect square divisor, there must be an even exponent for each number in the prime factorization. Thus, there are 5 * 3 * 2 perfect squares. (For 2, you can have 0, 2, 4, 6, 8, or 10 2s, etc. Note that 7 and 11 can not be in the prime factorization of a perfect square because there is only one of each in 12!.)
 +
The probability that the divisor chosen is a perfect square is 1/22. m + n = 23.
  
 
==See Also==
 
==See Also==

Revision as of 22:01, 31 January 2020

Problem

A positive integer divisor of $12!$ is chosen at random. The probability that the divisor chosen is a perfect square can be expressed as $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. What is $m+n$?

$\textbf{(A)}\ 3\qquad\textbf{(B)}\ 5\qquad\textbf{(C)}\ 12\qquad\textbf{(D)}\ 18\qquad\textbf{(E)}\ 23$

Solution

The prime factorization of 12! is $2^{10}$ * $3^5$ * $5^2$ * $7$ * $11$. This yields a total of $11$ * $6$ * $3$ * $2$ * $2$ divisors of 12!. In order to produce a perfect square divisor, there must be an even exponent for each number in the prime factorization. Thus, there are 5 * 3 * 2 perfect squares. (For 2, you can have 0, 2, 4, 6, 8, or 10 2s, etc. Note that 7 and 11 can not be in the prime factorization of a perfect square because there is only one of each in 12!.) The probability that the divisor chosen is a perfect square is 1/22. m + n = 23.

See Also

2020 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png