Difference between revisions of "2020 AMC 10A Problems/Problem 14"

(Created page with "Real numbers <math>x</math> and <math>y</math> satisfy <math>x + y = 4</math> and <math>x \cdot y = -2</math>. What is the value of<cmath>x + \frac{x^3}{y^2} + \frac{y^3}{x^2}...")
 
Line 1: Line 1:
 
Real numbers <math>x</math> and <math>y</math> satisfy <math>x + y = 4</math> and <math>x \cdot y = -2</math>. What is the value of<cmath>x + \frac{x^3}{y^2} + \frac{y^3}{x^2} + y?</cmath>
 
Real numbers <math>x</math> and <math>y</math> satisfy <math>x + y = 4</math> and <math>x \cdot y = -2</math>. What is the value of<cmath>x + \frac{x^3}{y^2} + \frac{y^3}{x^2} + y?</cmath>
 
<math>\textbf{(A)}\ 360\qquad\textbf{(B)}\ 400\qquad\textbf{(C)}\ 420\qquad\textbf{(D)}\ 440\qquad\textbf{(E)}\ 480</math>
 
<math>\textbf{(A)}\ 360\qquad\textbf{(B)}\ 400\qquad\textbf{(C)}\ 420\qquad\textbf{(D)}\ 440\qquad\textbf{(E)}\ 480</math>
 +
 +
==See Also==
 +
 +
{{AMC10 box|year=2020|ab=A|num-b=13|num-a=15}}
 +
{{MAA Notice}}

Revision as of 21:03, 31 January 2020

Real numbers $x$ and $y$ satisfy $x + y = 4$ and $x \cdot y = -2$. What is the value of\[x + \frac{x^3}{y^2} + \frac{y^3}{x^2} + y?\] $\textbf{(A)}\ 360\qquad\textbf{(B)}\ 400\qquad\textbf{(C)}\ 420\qquad\textbf{(D)}\ 440\qquad\textbf{(E)}\ 480$

See Also

2020 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png