Difference between revisions of "2020 AMC 10A Problems/Problem 22"
(Created page with "For how many positive integers <math>n \le 1000</math> is<cmath>\left\lfloor \dfrac{998}{n} \right\rfloor+\left\lfloor \dfrac{999}{n} \right\rfloor+\left\lfloor \dfrac{1000}{n...") |
|||
Line 2: | Line 2: | ||
<math>\textbf{(A) } 22 \qquad\textbf{(B) } 23 \qquad\textbf{(C) } 24 \qquad\textbf{(D) } 25 \qquad\textbf{(E) } 26</math> | <math>\textbf{(A) } 22 \qquad\textbf{(B) } 23 \qquad\textbf{(C) } 24 \qquad\textbf{(D) } 25 \qquad\textbf{(E) } 26</math> | ||
+ | |||
+ | ==See Also== | ||
+ | |||
+ | {{AMC10 box|year=2020|ab=A|num-b=21|num-a=23}} | ||
+ | {{MAA Notice}} |
Revision as of 21:05, 31 January 2020
For how many positive integers isnot divisible by ? (Recall that is the greatest integer less than or equal to .)
See Also
2020 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 21 |
Followed by Problem 23 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.