Difference between revisions of "2020 AMC 10A Problems/Problem 13"

(Created page with "{{duplicate|2020 AMC 12A #11 and 2020 AMC 10A #13}} ==Problem 13== A frog sitting at the point <math>(1, 2)</math> begins...")
 
Line 8: Line 8:
  
 
==Solution==
 
==Solution==
 +
 +
==See Also==
 +
 +
{{AMC10 box|year=2020|ab=A|num-b=12|num-a=14}}
 +
{{MAA Notice}}

Revision as of 21:02, 31 January 2020

The following problem is from both the 2020 AMC 12A #11 and 2020 AMC 10A #13, so both problems redirect to this page.

Problem 13

A frog sitting at the point $(1, 2)$ begins a sequence of jumps, where each jump is parallel to one of the coordinate axes and has length $1$, and the direction of each jump (up, down, right, or left) is chosen independently at random. The sequence ends when the frog reaches a side of the square with vertices $(0,0), (0,4), (4,4),$ and $(4,0)$. What is the probability that the sequence of jumps ends on a vertical side of the square$?$

$\textbf{(A)}\ \frac12\qquad\textbf{(B)}\ \frac 58\qquad\textbf{(C)}\ \frac 23\qquad\textbf{(D)}\ \frac34\qquad\textbf{(E)}\ \frac 78$

Solution

See Also

2020 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png