Difference between revisions of "Pythagorean Theorem"
m (Added a little info.) |
m |
||
Line 2: | Line 2: | ||
− | The '''Pythagorean Theorem''' states that for | + | The '''Pythagorean Theorem''' states that for a [[right triangle]] with legs of length <math>a</math> and <math>b</math> and [[hypotenuse]] of length <math>c</math> we have the relationship <math>{a}^{2}+{b}^{2}={c}^{2}</math>. This theorem has been know since antiquity and is a classic to prove; hundreds of proofs have been published and many can be demonstrated entirely visually. The Pythagorean Theorem is one of the most frequently used theorem in [[geometry]], and is one of the many tools in a good geometer's arsenal. A very large number of geometry problems can be solved by building right triangles and applying the Pythagorean Theorem. |
This is generalized by the [[Pythagorean Inequality]] (See [[geometric inequalities]]) and the [[Law of Cosines]].) | This is generalized by the [[Pythagorean Inequality]] (See [[geometric inequalities]]) and the [[Law of Cosines]].) |
Revision as of 10:22, 10 November 2006
This article is a stub. Help us out by expanding it.
The Pythagorean Theorem states that for a right triangle with legs of length and and hypotenuse of length we have the relationship . This theorem has been know since antiquity and is a classic to prove; hundreds of proofs have been published and many can be demonstrated entirely visually. The Pythagorean Theorem is one of the most frequently used theorem in geometry, and is one of the many tools in a good geometer's arsenal. A very large number of geometry problems can be solved by building right triangles and applying the Pythagorean Theorem.
This is generalized by the Pythagorean Inequality (See geometric inequalities) and the Law of Cosines.)
Introductory
Example Problems
Common Pythagorean Triples
A Pythagorean Triple is a set of 3 positive integers such that , i.e. the 3 numbers can be the lengths of the sides of a right triangle. Among these, the Primitive Pythagorean Triples, those in which the three numbers have no common divisor, are most interesting. A few of them are:
3-4-5
5-12-13
7-24-25
8-15-17
9-40-41