Difference between revisions of "2004 AMC 10B Problems/Problem 18"
Shurong.ge (talk | contribs) |
Shurong.ge (talk | contribs) |
||
Line 80: | Line 80: | ||
Hence <math>S_{BDF} = S_{ACE} - 3\cdot\left( \frac 3{16} \cdot S_{ACE} \right) = \frac 7{16} \cdot S_{ACE}</math>, and the answer is <math>\frac{S_{BDF}}{S_{ACE}} = \boxed{\frac 7{16}}</math>. | Hence <math>S_{BDF} = S_{ACE} - 3\cdot\left( \frac 3{16} \cdot S_{ACE} \right) = \frac 7{16} \cdot S_{ACE}</math>, and the answer is <math>\frac{S_{BDF}}{S_{ACE}} = \boxed{\frac 7{16}}</math>. | ||
− | ==Solution 3== | + | ==Solution 3 (Coordinate Geometry)== |
− | The area of triangle ACE is 96. To find the area of triangle DBF, let D be (4, 0), let B be (0, 9), and let F be (12, 3). You can then use the shoelace theorem to find the area of DBF, which is 42. <math> \frac {42}{96} = \boxed{\frac 7{16}}</math> | + | We will put triangle ACE on a xy-coordinate plane with C being the origin. The area of triangle ACE is 96. To find the area of triangle DBF, let D be (4, 0), let B be (0, 9), and let F be (12, 3). You can then use the shoelace theorem to find the area of DBF, which is 42. <math> \frac {42}{96} = \boxed{\frac 7{16}}</math> |
Revision as of 20:34, 3 January 2020
Contents
Problem
In the right triangle , we have
,
, and
. Points
,
, and
are located on
,
, and
, respectively, so that
,
, and
. What is the ratio of the area of
to that of
?
Solution 1
Let . Because
is divided into four triangles,
.
Because of triangle area,
.
and
, so
.
, so
.
Solution 2
First of all, note that , and therefore
.
Draw the height from onto
as in the picture below:
Now consider the area of . Clearly the triangles
and
are similar, as they have all angles equal. Their ratio is
, hence
.
Now the area
of
can be computed as
=
.
Similarly we can find that as well.
Hence , and the answer is
.
Solution 3 (Coordinate Geometry)
We will put triangle ACE on a xy-coordinate plane with C being the origin. The area of triangle ACE is 96. To find the area of triangle DBF, let D be (4, 0), let B be (0, 9), and let F be (12, 3). You can then use the shoelace theorem to find the area of DBF, which is 42.
Solution 4
You can also place a point on
such that
is
, creating trapezoid
. Then, you can find the area of the trapezoid, subtract the area of the two right triangles
and
, divide by the area of
, and get the ratio of
.
See also
2004 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 17 |
Followed by Problem 19 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.