Difference between revisions of "1985 AIME Problems/Problem 1"
Line 2: | Line 2: | ||
Let <math>x_1=97</math>, and for <math>n>1</math> let<math>x_n=\frac{n}{x_{n-1}}</math>. Calculate the product <math>x_1x_2x_3x_4x_5x_6x_7x_8</math>. | Let <math>x_1=97</math>, and for <math>n>1</math> let<math>x_n=\frac{n}{x_{n-1}}</math>. Calculate the product <math>x_1x_2x_3x_4x_5x_6x_7x_8</math>. | ||
==Solution== | ==Solution== | ||
− | {{ | + | Since <math>x_n=\frac{n}{x_{n-1}}</math>, <math>x_n \cdot x_{n - 1} = n</math>. Setting <math>n = 2, 4, 6</math> and <math>8</math> in this equation gives us respectively <math>x_1x_2 = 2</math>, <math>x_3x_4 = 4</math>, <math>x_5x_6 = 6</math> and <math>x_7x_8 = 8</math> so <math>x_1x_2x_3x_4x_5x_6x_7x_8 = 2\cdot4\cdot6\cdot8 = 384</math>. |
==See Also== | ==See Also== | ||
*[[1985 AIME Problems/Problem 2|Next Problem]] | *[[1985 AIME Problems/Problem 2|Next Problem]] | ||
− | *[[1985 AIME]] | + | *[[1985 AIME Problems | Back to exam]] |
+ | |||
+ | [[Category:Introductory Algebra Problems]] |
Revision as of 12:33, 18 November 2006
Problem
Let , and for let. Calculate the product .
Solution
Since , . Setting and in this equation gives us respectively , , and so .