Difference between revisions of "2019 AMC 10B Problems/Problem 16"
m |
(New Solution) |
||
Line 17: | Line 17: | ||
By the Law of Cosines in <math>\triangle BED</math>, if <math>BD = d</math>, we have <cmath>\begin{split}&d^2 = (3x)^2+(3x)^2-2\cdot\frac{-3}{5}(3x)(3x) \\ \Rightarrow \ &d^2 = 18x^2 + \frac{54x^2}{5} = \frac{144x^2}{5} \\ \Rightarrow \ &d = \frac{12x}{\sqrt{5}}\end{split}</cmath> Now <math>AD = AB - BD = 4x\sqrt{5} - \frac{12x}{\sqrt{5}} = \frac{8x}{\sqrt{5}}</math>. Thus the answer is <math>\frac{\left(\frac{8x}{\sqrt{5}}\right)}{\left(\frac{12x}{\sqrt{5}}\right)} = \frac{8}{12} = \boxed{\textbf{(A) }2:3}</math>. | By the Law of Cosines in <math>\triangle BED</math>, if <math>BD = d</math>, we have <cmath>\begin{split}&d^2 = (3x)^2+(3x)^2-2\cdot\frac{-3}{5}(3x)(3x) \\ \Rightarrow \ &d^2 = 18x^2 + \frac{54x^2}{5} = \frac{144x^2}{5} \\ \Rightarrow \ &d = \frac{12x}{\sqrt{5}}\end{split}</cmath> Now <math>AD = AB - BD = 4x\sqrt{5} - \frac{12x}{\sqrt{5}} = \frac{8x}{\sqrt{5}}</math>. Thus the answer is <math>\frac{\left(\frac{8x}{\sqrt{5}}\right)}{\left(\frac{12x}{\sqrt{5}}\right)} = \frac{8}{12} = \boxed{\textbf{(A) }2:3}</math>. | ||
+ | |||
+ | ==Solution 3== | ||
+ | WLOG, let <math>AC=CD=4</math>, and <math>DE=EB=3</math>. <math>\angle CDE = 180^{\circ} - \angle ADC - \angle BDE = 180^{\circ} - \angle DAC - \angle DBE = 90^{\circ}</math>. Because of this, <math>\triangle DEC</math> is a 3-4-5 right triangle. Draw the altitude <math>DF</math> of <math>\triangle DEC</math>. <math>DF</math> is <math>\frac{12}{5}</math> by the base-height triangle area formula. <math>\triangle ABC</math> is similar to <math>\triangle DBF</math> (AA). So <math>\frac{DF}{AC} = \frac{BD}{AB} = \frac35</math>. <math>DB</math> is <math>\frac35</math> of <math>AB</math>. Therefore, <math>AD:DB</math> is <math>\boxed{\textbf{(A) } 2:3}</math>. | ||
+ | |||
+ | ~Thegreatboy90 | ||
==See Also== | ==See Also== | ||
{{AMC10 box|year=2019|ab=B|num-b=15|num-a=17}} | {{AMC10 box|year=2019|ab=B|num-b=15|num-a=17}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 17:54, 2 February 2020
Problem
In with a right angle at , point lies in the interior of and point lies in the interior of so that and the ratio . What is the ratio
Solution 1
Without loss of generality, let and . Let and . As and are isosceles, and . Then , so is a triangle with .
Then , and is a triangle.
In isosceles triangles and , drop altitudes from and onto ; denote the feet of these altitudes by and respectively. Then by AAA similarity, so we get that , and . Similarly we get , and .
Solution 2
Let , and . (For this solution, is above , and is to the right of ). Also let , so , which implies . Similarly, , which implies . This further implies that .
Now we see that . Thus is a right triangle, with side lengths of , , and (by the Pythagorean Theorem, or simply the Pythagorean triple ). Therefore (by definition), , and . Hence (by the double angle formula), giving .
By the Law of Cosines in , if , we have Now . Thus the answer is .
Solution 3
WLOG, let , and . . Because of this, is a 3-4-5 right triangle. Draw the altitude of . is by the base-height triangle area formula. is similar to (AA). So . is of . Therefore, is .
~Thegreatboy90
See Also
2019 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 15 |
Followed by Problem 17 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.